Esempio n. 1
0
def visualize_pc(pc, mask=None):
    '''
    pc - 3 x n
    mask - 1 x n, [0,1]
    '''
    pc = pc.permute(1, 0)  # n x 3
    pc = pc.cpu().detach().numpy()
    pcd = geometry.PointCloud()
    pcd.points = utility.Vector3dVector(pc)
    if mask is not None:
        mask = mask / mask.max()
        #mask=mask.pow(0.5) #dilate the values
        mask = mask.expand(3, -1).permute(1, 0)  #nx3
        red = mask.new(mask.shape).zero_()
        red[:, 0] += 1.0
        green = mask.new(mask.shape).zero_()
        green[:, 1] += 1.0
        blue = mask.new(mask.shape).zero_()
        blue[:, 2] += 1.0
        less = ((2 * mask).mul(green) + (1.0 - (2 * mask)).mul(blue)).mul(
            mask.lt(0.5).float())
        more = (((mask - 0.5) * 2).mul(red) +
                (1.0 - ((mask - 0.5) * 2)).mul(green)).mul(
                    mask.ge(0.5).float())
        mask = less + more
        mask_max, _ = mask.max(dim=1, keepdim=True)
        mask = mask.div(mask_max)
        mask = mask.cpu().detach().numpy()
        pcd.colors = utility.Vector3dVector(mask)
        visualization.draw_geometries([pcd])
Esempio n. 2
0
    def get_o3d_meshes(self, hand_contact=False, normalize_pos=False):
        """Returns Open3D meshes for visualization
        Draw with: o3dv.draw_geometries([hand_mesh, obj_mesh])"""

        hand_color = np.asarray([224.0, 172.0, 105.0]) / 255
        obj_color = np.asarray([100.0, 100.0, 100.0]) / 255

        obj_centroid = self.obj_verts.mean(0)
        if not normalize_pos:
            obj_centroid *= 0

        hand_mesh = o3dg.TriangleMesh()
        hand_mesh.vertices = o3du.Vector3dVector(self.hand_verts -
                                                 obj_centroid)
        hand_mesh.triangles = o3du.Vector3iVector(HandObject.closed_faces)
        hand_mesh.compute_vertex_normals()

        if hand_contact and self.hand_contact.mean() != 0:
            util.mesh_set_color(self.hand_contact, hand_mesh)
        else:
            hand_mesh.paint_uniform_color(hand_color)

        obj_mesh = o3dg.TriangleMesh()
        obj_mesh.vertices = o3du.Vector3dVector(self.obj_verts - obj_centroid)
        obj_mesh.triangles = o3du.Vector3iVector(self.obj_faces)
        obj_mesh.compute_vertex_normals()

        if self.obj_contact.mean() != 0:
            util.mesh_set_color(self.obj_contact, obj_mesh)
        else:
            obj_mesh.paint_uniform_color(obj_color)

        return hand_mesh, obj_mesh
Esempio n. 3
0
 def runCPDRegistration(self, sourceLM, sourceSLM, targetSLM, parameters):
     from open3d import geometry
     from open3d import utility
     sourceArrayCombined = np.append(sourceSLM, sourceLM, axis=0)
     targetArray = np.asarray(targetSLM)
     #Convert to pointcloud for scaling
     sourceCloud = geometry.PointCloud()
     sourceCloud.points = utility.Vector3dVector(sourceArrayCombined)
     targetCloud = geometry.PointCloud()
     targetCloud.points = utility.Vector3dVector(targetArray)
     cloudSize = np.max(targetCloud.get_max_bound() -
                        targetCloud.get_min_bound())
     targetCloud.scale(25 / cloudSize, center=False)
     sourceCloud.scale(25 / cloudSize, center=False)
     #Convert back to numpy for cpd
     sourceArrayCombined = np.asarray(sourceCloud.points, dtype=np.float32)
     targetArray = np.asarray(targetCloud.points, dtype=np.float32)
     registrationOutput = self.cpd_registration(targetArray,
                                                sourceArrayCombined,
                                                parameters["CPDIterations"],
                                                parameters["CPDTolerence"],
                                                parameters["alpha"],
                                                parameters["beta"])
     deformed_array, _ = registrationOutput.register()
     #Capture output landmarks from source pointcloud
     fiducial_prediction = deformed_array[-len(sourceLM):]
     fiducialCloud = geometry.PointCloud()
     fiducialCloud.points = utility.Vector3dVector(fiducial_prediction)
     fiducialCloud.scale(cloudSize / 25, center=False)
     return np.asarray(fiducialCloud.points)
Esempio n. 4
0
    def estimate_3Dpose(self):

        sample_pcd = self.sample_pcd
        XYZ_model = self.XYZ_model
        diameter_model = self.diameter_model
        model_pcd = self.model_pcd

        numpy_point_data = np.asarray(sample_pcd.points)
        print(numpy_point_data.shape)
        XYZ_min = np.min(numpy_point_data, axis=0)
        XYZ_max = np.max(numpy_point_data, axis=0)
        print('minimum and maximum: ', XYZ_min, XYZ_max)
        diameter_sample = np.sqrt(
            np.square(XYZ_max[0] - XYZ_min[0]) +
            np.square(XYZ_max[1] - XYZ_min[1]) +
            np.square(XYZ_max[2] - XYZ_min[2]))
        numpy_point_data = np.reshape(numpy_point_data, (-1, 3))
        sample_pcd.points = utility.Vector3dVector(numpy_point_data)
        # sample_pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])  # Flip it, otherwise the
        # pointcloud will be upside down
        sample_pcd.paint_uniform_color([0, 1, 0])

        ratio = diameter_sample / diameter_model  # Using diameter from pointcloud
        print('Ratio = mushroom_diameter/mushroom_diameter_model: ', ratio)
        XYZ_model_new = XYZ_model * ratio  # Resize the model points to match that of a sample
        model_pcd.points = utility.Vector3dVector(XYZ_model_new)
        # model_pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])  # Flip it, otherwise the
        # pointcloud will be upside down
        model_pcd.paint_uniform_color([1, 0, 0])
        visualization.draw_geometries([model_pcd + sample_pcd])
        rotation_matrix_estimated, quaternion_estimated = self.combined_registration(
            model_pcd, sample_pcd)
        print('rotation_matrix_estimated and rotation_vector_estimated: ',
              rotation_matrix_estimated)
        model_pcd.paint_uniform_color([1, 0, 0])
        sample_pcd.paint_uniform_color([0, 1, 0])
        visualization.draw_geometries([model_pcd + sample_pcd])
Esempio n. 5
0
 def loadAndScaleFiducials(self, fiducialPath, scaling):
     from open3d import geometry
     from open3d import utility
     sourceLandmarkNode = slicer.util.loadMarkups(fiducialPath)
     self.RAS2LPSTransform(sourceLandmarkNode)
     point = [0, 0, 0]
     sourceLandmarks_np = np.zeros(
         shape=(sourceLandmarkNode.GetNumberOfFiducials(), 3))
     for i in range(sourceLandmarkNode.GetNumberOfFiducials()):
         sourceLandmarkNode.GetMarkupPoint(0, i, point)
         sourceLandmarks_np[i, :] = point
     slicer.mrmlScene.RemoveNode(sourceLandmarkNode)
     cloud = geometry.PointCloud()
     cloud.points = utility.Vector3dVector(sourceLandmarks_np)
     cloud.scale(scaling, center=False)
     fiducialVTK = self.convertPointsToVTK(cloud.points)
     return fiducialVTK
Esempio n. 6
0
def apply_semantic_colormap_to_mesh(mesh,
                                    semantic_idx,
                                    sigmoid_a=0.05,
                                    invert=False):
    colors = np.asarray(mesh.vertex_colors)[:, 0]
    colors = mutils.texture_proc(colors, a=sigmoid_a, invert=invert)

    # apply different colormaps based on finger
    mesh_colors = np.zeros((len(colors), 3))
    cmaps = ['Greys', 'Purples', 'Oranges', 'Greens', 'Blues', 'Reds']
    cmaps = [plt.cm.get_cmap(c) for c in cmaps]
    for semantic_id in np.unique(semantic_idx):
        if (len(cmaps) <= semantic_id):
            print('Not enough colormaps, ignoring semantic id {:d}'.format(
                semantic_id))
            continue
        idx = semantic_idx == semantic_id
        mesh_colors[idx] = cmaps[semantic_id](colors[idx])[:, :3]
    mesh.vertex_colors = o3du.Vector3dVector(mesh_colors)
    return mesh
Esempio n. 7
0
def mesh_set_color(color, mesh, colormap=plt.cm.inferno):
    """
    Applies colormap to object
    :param color: Tensor or numpy array, (N, 1)
    :param mesh: Open3D TriangleMesh
    :return:
    """
    # vertex_colors = np.tile(color.squeeze(), (3, 1)).T
    # mesh.vertex_colors = o3du.Vector3dVector(vertex_colors)
    # geometry.apply_colormap(mesh, apply_sigmoid=False)

    colors = np.asarray(color).squeeze()
    if len(colors.shape) > 1:
        colors = colors[:, 0]

    colors[colors < 0.1] = 0.1 # TODO hack to make brighter

    colors = colormap(colors)[:, :3]
    colors = o3du.Vector3dVector(colors)
    mesh.vertex_colors = colors
Esempio n. 8
0
def show_contactmap(p_num,
                    intent,
                    object_name,
                    mode='simple',
                    joint_sphere_radius_mm=4.0,
                    bone_cylinder_radius_mm=2.5,
                    bone_color=np.asarray([224.0, 172.0, 105.0]) / 255):
    """
  mode =
  simple: just contact map
  simple_hands: skeleton + contact map
  semantic_hands_fingers: skeleton + contact map colored by finger proximity
  semantic_hands_phalanges: skeleton + contact map colored by phalange proximity
  """
    cp = ContactPose(p_num, intent, object_name)

    # read contactmap
    mesh = o3dio.read_triangle_mesh(cp.contactmap_filename)
    mesh.compute_vertex_normals()

    geoms = []
    # apply simple colormap to the mesh
    if 'simple' in mode:
        mesh = apply_colormap_to_mesh(mesh)
        geoms.append(mesh)

    if 'hands' in mode:
        # read hands
        line_ids = mutils.get_hand_line_ids()
        joint_locs = cp.hand_joints()

        # show hands
        hand_colors = [[0, 1, 0], [1, 0, 0]]
        for hand_idx, hand_joints in enumerate(joint_locs):
            if hand_joints is None:
                continue

            # joint locations
            for j in hand_joints:
                m = o3dg.TriangleMesh.create_sphere(
                    radius=joint_sphere_radius_mm * 1e-3, resolution=10)
                T = np.eye(4)
                T[:3, 3] = j
                m.transform(T)
                m.paint_uniform_color(hand_colors[hand_idx])
                m.compute_vertex_normals()
                geoms.append(m)

            # connecting lines
            for line_idx, (idx0, idx1) in enumerate(line_ids):
                bone = hand_joints[idx0] - hand_joints[idx1]
                h = np.linalg.norm(bone)
                l = o3dg.TriangleMesh.create_cylinder(
                    radius=bone_cylinder_radius_mm * 1e-3,
                    height=h,
                    resolution=10)
                T = np.eye(4)
                T[2, 3] = -h / 2.0
                l.transform(T)
                T = mutils.rotmat_from_vecs(bone, [0, 0, 1])
                T[:3, 3] = hand_joints[idx0]
                l.transform(T)
                l.paint_uniform_color(bone_color)
                l.compute_vertex_normals()
                geoms.append(l)

        if 'semantic' in mode:
            n_lines_per_hand = len(line_ids)
            n_parts_per_finger = 4
            # find line equations for hand parts
            lines = []
            for hand_joints in joint_locs:
                if hand_joints is None:
                    continue
                for line_id in line_ids:
                    a = hand_joints[line_id[0]]
                    n = hand_joints[line_id[1]] - hand_joints[line_id[0]]
                    n /= np.linalg.norm(n)
                    lines.append(np.hstack((a, n)))
            lines = np.asarray(lines)

            ops = np.asarray(mesh.vertices)
            d_lines = mutils.p_dist_linesegment(ops, lines)
            line_idx = np.argmin(d_lines, axis=1) % n_lines_per_hand
            finger_idx, part_idx = divmod(line_idx, n_parts_per_finger)
            if 'phalanges' in mode:
                mesh = apply_semantic_colormap_to_mesh(mesh, part_idx)
            elif 'fingers' in mode:
                mesh = apply_semantic_colormap_to_mesh(mesh, finger_idx)
            geoms.append(mesh)
    elif 'mano' in mode:
        for hand in cp.mano_meshes():
            if hand is None:
                continue
            mesh = o3dg.TriangleMesh()
            mesh.vertices = o3du.Vector3dVector(hand['vertices'])
            mesh.triangles = o3du.Vector3iVector(hand['faces'])
            mesh.paint_uniform_color(bone_color)
            mesh.compute_vertex_normals()
            geoms.append(mesh)

    o3dv.draw_geometries(geoms)
Esempio n. 9
0
def apply_colormap_to_mesh(mesh, sigmoid_a=0.05, invert=False):
    colors = np.asarray(mesh.vertex_colors)[:, 0]
    colors = mutils.texture_proc(colors, a=sigmoid_a, invert=invert)
    colors = plt.cm.inferno(colors)[:, :3]
    mesh.vertex_colors = o3du.Vector3dVector(colors)
    return mesh
Esempio n. 10
0
def test_GFP():
    from open3d import visualization, geometry, utility
    test_points, test_labels = load_h5(test_h5_path)

    nr_points = ModellingParameters.NUM_POINTS_UPSAMPLE
    model = GFPNet(nr_points)

    model.compile(optimizer='adam',
                  loss='mean_squared_error',
                  metrics=['mse', 'accuracy'])

    # print the model summary
    model.load_weights(net_params.PATH_TO_WEIGHTS)
    print(model.summary())
    primitive_path = PATHS.PATH_TO_PRIMITIVES.CAR.root + "CarPrimitive_15_500.off"
    io_primitive = IoPrimitive(primitive_path)
    io_primitive.load_primitive(normalize=False)

    pathlist = Path(PATHS.NETWORK.root).glob('*.{0}'.format('off'))
    for path in pathlist:
        lidar_cloud_path = str(path)
        file_name = lidar_cloud_path.split("\\")[-1]
        label_path = PATHS.NETWORK.TEST_MODELLED + file_name
        cloud_path = PATHS.NETWORK.TEST_CLOUD + file_name

        observation_points = read_off_file(cloud_path)
        io_observation_cloud = IoObservation(observation_points)
        io_primitive.scale_relative_to(io_observation_cloud)
        io_primitive.align_primitive_on_z_axis(io_observation_cloud)
        io_primitive.compute_normals()

        modelled_primitive_points = read_off_file(label_path)
        io_modelled_primitive = IoObservation(modelled_primitive_points)

        eval_X, boolIndexes = make_samples(io_observation_cloud,
                                           io_primitive,
                                           io_modelled_primitive,
                                           usePrimitivePoints=False,
                                           generate_for='test')
        eval_X = upsample_point_set(
            sample_collection=eval_X,
            points_count=ModellingParameters.NUM_POINTS_UPSAMPLE)

        cloud_bef = geometry.PointCloud()
        cloud_bef.points = utility.Vector3dVector(
            np.asarray(io_primitive.point_cloud.points))
        cloud_bef.normals = utility.Vector3dVector(
            np.asarray(io_primitive.point_cloud.normals))
        cloud_bef.paint_uniform_color([255, 0, 0])

        cloud_lidar = geometry.PointCloud()
        cloud_lidar.points = utility.Vector3dVector(
            np.asarray(io_observation_cloud.point_cloud))
        cloud_lidar.paint_uniform_color([0, 0, 0])

        cloud_modelled = geometry.PointCloud()
        cloud_modelled.points = utility.Vector3dVector(
            np.asarray(io_modelled_primitive.point_cloud.points))
        cloud_modelled.paint_uniform_color([255, 255, 0])

        visualization.draw_geometries([cloud_bef, cloud_lidar, cloud_modelled])
        final_pts = []
        idx = 0
        for i in range(0, len(eval_X)):
            pred = eval_X[i].reshape(-1, nr_points, 3)
            points = model.predict(pred)
            final_pts.append(points)
            idx = i

        final_pts = np.reshape(final_pts, newshape=(len(final_pts), 3))
        print('Final pts len : ', len(final_pts))
        final_pts = [
            point * ModellingParameters.CAR.SCALE for point in final_pts
        ]
        true_indexes = [i for i, val in enumerate(boolIndexes) if val]
        for i in true_indexes:
            cloud_bef.colors[i] = [0, 255, 0]
        import pclpy.pcl.point_types as ptype
        aux = ptype.PointXYZ()
        new_points = []
        for i in range(0, len(final_pts)):
            val = io_primitive.point_cloud.points[true_indexes[i]] + (
                final_pts[i] - ModellingParameters.NORMALIZATION_CENTER)
            aux.x = val[0]
            aux.y = val[1]
            aux.z = val[2]
            new_points.append(val)
            # transform_neighbor_points_for(i, aux, srcPrimitive, None)
        cloud_aft = geometry.PointCloud()
        cloud_aft.points = utility.Vector3dVector(new_points)
        cloud_aft.paint_uniform_color([0, 0, 255])
        # cloud.normals = utility.Vector3dVector(cloud_points[:,3:6])
        visualization.draw_geometries(
            [cloud_bef, cloud_aft, cloud_lidar, cloud_modelled])
Esempio n. 11
0
 def return_open3d_mesh(self, vertices, triangles):
     mesh = geometry.TriangleMesh()
     mesh.vertices = utility.Vector3dVector(vertices)
     mesh.triangles = utility.Vector3iVector(triangles)
     return mesh