Esempio n. 1
0
    def test_average(self):
        """Test the average of policies.

    Here we test that the average of values is the value of the average policy.
    """
        game = crowd_modelling.MFGCrowdModellingGame()
        uniform_policy = policy.UniformRandomPolicy(game)
        mfg_dist = distribution.DistributionPolicy(game, uniform_policy)
        br_value = best_response_value.BestResponse(game, mfg_dist)
        py_value = policy_value.PolicyValue(game, mfg_dist, uniform_policy)
        greedy_pi = greedy_policy.GreedyPolicy(game, None, br_value)
        greedy_pi = greedy_pi.to_tabular()
        merged_pi = fictitious_play.MergedPolicy(
            game, list(range(game.num_players())), [uniform_policy, greedy_pi],
            [mfg_dist,
             distribution.DistributionPolicy(game, greedy_pi)], [0.5, 0.5])
        merged_pi_value = policy_value.PolicyValue(game, mfg_dist, merged_pi)

        self.assertAlmostEqual(merged_pi_value(game.new_initial_state()),
                               (br_value(game.new_initial_state()) +
                                py_value(game.new_initial_state())) / 2)
Esempio n. 2
0
def main(argv: Sequence[str]) -> None:
  # TODO(perolat): move to an example directory.
  if len(argv) > 1:
    raise app.UsageError('Too many command-line arguments.')
  mfg_game = pyspiel.load_game(FLAGS.game, GAME_SETTINGS.get(FLAGS.game, {}))
  mfg_state = mfg_game.new_initial_state()
  print('Playing a single arbitrary trajectory')
  while not mfg_state.is_terminal():
    print('State obs string:', mfg_state.observation_string(0))
    if mfg_state.current_player() == pyspiel.PlayerId.CHANCE:
      action_list, prob_list = zip(*mfg_state.chance_outcomes())
      action = np.random.choice(action_list, p=prob_list)
      mfg_state.apply_action(action)
    elif mfg_state.current_player() == pyspiel.PlayerId.MEAN_FIELD:
      dist_to_register = mfg_state.distribution_support()
      n_states = len(dist_to_register)
      dist = [1.0 / n_states for _ in range(n_states)]
      mfg_state.update_distribution(dist)
    else:
      legal_list = mfg_state.legal_actions()
      action = np.random.choice(legal_list)
      mfg_state.apply_action(action)

  print('compute nashconv')
  uniform_policy = policy.UniformRandomPolicy(mfg_game)
  nash_conv_fp = nash_conv.NashConv(mfg_game, uniform_policy)
  print('Nashconv:', nash_conv_fp.nash_conv())

  print('compute distribution')
  mfg_dist = distribution.DistributionPolicy(mfg_game, uniform_policy)
  br_value = best_response_value.BestResponse(
      mfg_game, mfg_dist, value.TabularValueFunction(mfg_game))
  py_value = policy_value.PolicyValue(mfg_game, mfg_dist, uniform_policy,
                                      value.TabularValueFunction(mfg_game))
  print(
      'Value of a best response policy to a uniform policy '
      '(computed with best_response_value)',
      br_value(mfg_game.new_initial_state()))
  print('Value of the uniform policy:', py_value(mfg_game.new_initial_state()))
  greedy_pi = greedy_policy.GreedyPolicy(mfg_game, None, br_value)
  greedy_pi = greedy_pi.to_tabular()
  pybr_value = policy_value.PolicyValue(mfg_game, mfg_dist, greedy_pi,
                                        value.TabularValueFunction(mfg_game))
  print(
      'Value of a best response policy to a uniform policy (computed at the '
      'value of the greedy policy of the best response value)',
      pybr_value(mfg_game.new_initial_state()))
  print('merge')
  merged_pi = fictitious_play.MergedPolicy(
      mfg_game, list(range(mfg_game.num_players())),
      [uniform_policy, greedy_pi],
      [mfg_dist, distribution.DistributionPolicy(mfg_game, greedy_pi)],
      [0.5, 0.5])

  merged_pi_value = policy_value.PolicyValue(
      mfg_game, mfg_dist, merged_pi, value.TabularValueFunction(mfg_game))
  print(br_value(mfg_game.new_initial_state()))
  print(py_value(mfg_game.new_initial_state()))
  print(merged_pi_value(mfg_game.new_initial_state()))
  print((br_value(mfg_game.new_initial_state()) +
         py_value(mfg_game.new_initial_state())) / 2)
  print('fp')
  fp = fictitious_play.FictitiousPlay(mfg_game)
  for j in range(100):
    print('Iteration', j, 'of fictitious play')
    fp.iteration()
    fp_policy = fp.get_policy()
    nash_conv_fp = nash_conv.NashConv(mfg_game, fp_policy)
    print('Nashconv of the current FP policy', nash_conv_fp.nash_conv())
  print('md')
  md = mirror_descent.MirrorDescent(mfg_game,
                                    value.TabularValueFunction(mfg_game))
  for j in range(10):
    print('Iteration', j, 'of mirror descent')
    md.iteration()
    md_policy = md.get_policy()
    nash_conv_md = nash_conv.NashConv(mfg_game, md_policy)
    print('Nashconv of the current MD policy', nash_conv_md.nash_conv())
Esempio n. 3
0
def main(argv: Sequence[str]) -> None:
    # TODO(perolat): move to an example directory.
    if len(argv) > 1:
        raise app.UsageError('Too many command-line arguments.')
    game_settings = {
        'only_distribution_reward': True,
        'forbidden_states': '[0|0;0|1]',
        'initial_distribution': '[0|2;0|3]',
        'initial_distribution_value': '[0.5;0.5]',
    }
    mfg_game = pyspiel.load_game(FLAGS.game, game_settings)
    mfg_state = mfg_game.new_initial_state()
    while not mfg_state.is_terminal():
        print(mfg_state.observation_string(0))
        if mfg_state.current_player() == pyspiel.PlayerId.CHANCE:
            action_list, prob_list = zip(*mfg_state.chance_outcomes())
            action = np.random.choice(action_list, p=prob_list)
            mfg_state.apply_action(action)
        elif mfg_state.current_player() == pyspiel.PlayerId.MEAN_FIELD:
            dist_to_register = mfg_state.distribution_support()
            n_states = len(dist_to_register)
            dist = [1.0 / n_states for _ in range(n_states)]
            mfg_state.update_distribution(dist)
        else:
            legal_list = mfg_state.legal_actions()
            action = np.random.choice(legal_list)
            mfg_state.apply_action(action)

    print('compute nashconv')
    uniform_policy = policy.UniformRandomPolicy(mfg_game)
    nash_conv_fp = nash_conv.NashConv(mfg_game, uniform_policy)
    print(nash_conv_fp.nash_conv())

    print('compute distribution')
    mfg_dist = distribution.DistributionPolicy(mfg_game, uniform_policy)
    br_value = best_response_value.BestResponse(mfg_game, mfg_dist)
    py_value = policy_value.PolicyValue(mfg_game, mfg_dist, uniform_policy)
    print(br_value(mfg_game.new_initial_state()))
    print(py_value(mfg_game.new_initial_state()))
    greedy_pi = greedy_policy.GreedyPolicy(mfg_game, None, br_value)
    greedy_pi = greedy_pi.to_tabular()
    pybr_value = policy_value.PolicyValue(mfg_game, mfg_dist, greedy_pi)
    print(pybr_value(mfg_game.new_initial_state()))
    print('merge')
    merged_pi = fictitious_play.MergedPolicy(
        mfg_game, list(range(mfg_game.num_players())),
        [uniform_policy, greedy_pi],
        [mfg_dist,
         distribution.DistributionPolicy(mfg_game, greedy_pi)], [0.5, 0.5])

    merged_pi_value = policy_value.PolicyValue(mfg_game, mfg_dist, merged_pi)
    print(br_value(mfg_game.new_initial_state()))
    print(py_value(mfg_game.new_initial_state()))
    print(merged_pi_value(mfg_game.new_initial_state()))
    print((br_value(mfg_game.new_initial_state()) +
           py_value(mfg_game.new_initial_state())) / 2)
    print('fp')
    fp = fictitious_play.FictitiousPlay(mfg_game)
    for j in range(100):
        print(j)
        fp.iteration()
        fp_policy = fp.get_policy()
        nash_conv_fp = nash_conv.NashConv(mfg_game, fp_policy)
        print(nash_conv_fp.nash_conv())