Esempio n. 1
0
    def test_thrust_value_b734(self):
        nn = 5
        p = om.Problem()
        tas = np.linspace(0, 100, nn)
        tas_kt = tas * 1.94384
        alt = 0

        ivc = p.model.add_subsystem('ivc',
                                    subsys=om.IndepVarComp(),
                                    promotes_outputs=['*'])
        ivc.add_output(name='tas', val=tas, units='m/s')
        ivc.add_output(name='alt', val=alt, units='m')
        p.model.connect('alt', ['atmos.h', 'propulsion.elevation'])
        p.model.connect('tas', ['propulsion.tas'])

        p.model.add_subsystem(name='atmos', subsys=USatm1976Comp(num_nodes=1))
        p.model.connect('atmos.sos', 'propulsion.sos')
        p.model.connect('atmos.pres', ['propulsion.p_amb'])

        p.model.add_subsystem(name='propulsion',
                              subsys=PropulsionGroup(
                                  num_nodes=nn, airplane=self.airplane_734))

        p.setup()
        p.run_model()

        thrust = Thrust(ac='B734')
        reference_thrust = [thrust.takeoff(tas=v, alt=alt) for v in tas_kt]
        assert_near_equal(p.get_val('propulsion.thrust'),
                          reference_thrust,
                          tolerance=0.001)
Esempio n. 2
0
def plot():
    # Thrust = Thrust('A320', 'CFM56-5B4')
    thrust = Thrust('A320', 'V2500-A1')

    fig = plt.figure(figsize=(10,8))

    ax = fig.add_subplot(111, projection='3d')

    tas = np.arange(0, 500, 20)
    alt = np.arange(0, 35000, 2000)
    x, y = np.meshgrid(tas, alt)

    thr_to = thrust.takeoff(x, y)
    thr_cl = thrust.climb(x, y, 2000)

    c1, c2, c3 = .14231E+06, .51680E+05, .56809E-10
    thr_bada = c1 * (1 - y / c2 + c3 * y**2)

    plt.title('inflight')
    ax.plot_wireframe(x, y, thr_to, color='r', label='OpenAP-Thrust-TO')
    ax.plot_wireframe(x, y, thr_cl, color='g', label='Open-Thrust-CL')
    ax.plot_wireframe(x, y, thr_bada, color='b', label='BADA3')
    ax.set_xlabel('tas (kts)')
    ax.set_ylabel('alt (ft)')
    ax.set_zlabel('thr (N)')
    # ax.view_init(20, 40)
    ax.legend()
    plt.tight_layout()
    plt.show()
class Performance():
    """Calulate Instantaneous performance of one object"""
    def __init__(self, aircraft_name, write_output: bool = False):
        self.write = write_output
        # General Variables
        self.aircraft_data = prop.aircraft(aircraft_name)
        self.dt = 1.0 / 60.0  # simulation timestep 60 per seconds
        aircraft_txt = open(f"./data/{aircraft_name}.json", 'r').read()
        self.aircraft = json.loads(aircraft_txt)
        eng_name = self.aircraft_data["engine"]["default"]
        self.ac_thrust = Thrust(ac=self.aircraft["Name"], eng=eng_name)
        # self.ac_thrust = Thrust(f"./data/{aircraft_name}_thrust.csv")
        # Performance Variables (all unit in SI except stated otherwise)
        self.lift_drag = LiftDrag(f"./data/{aircraft_name}_ld.csv")
        self.g = 9.81
        self.mass = self.aircraft_data["limits"]["MTOW"]
        self.thrust_lever = 1.0
        self.altitude = 0.0
        self.pressure = 0.0
        self.density = 0.0
        self.temp = 0.0
        self.cas = 0.0
        self.tas = 0.0
        self.v_y = 0.0  # vertical Speed
        self.vs = 0.0  # Vertical Speed [fpm]
        self.drag = 0.0
        self.thrust = 0.0
        self.lift = 0.0
        self.weight = 0.0
        self.t_d = 0.0  # thrust minus drag aka exceed thrust
        self.l_w = 0.0  # lift minus weight aka exceed lift
        self.pitch = 0.0
        self.fpa = 0.0
        self.aoa = 0.0
        self.Q = 0.0  # tas² * density
        self.acc_x = 0.0
        self.acc_y = 0.0
        self.distance_x = 0.0  # total distance[m]
        self.d_x = 0.0  # instantaneous X distance[m]
        self.d_y = 0.0  # instantaneous Y distance[m]
        self.phase = 0  # Current phase
        self.cd = 0.0
        self.cl = 0.0
        self.drag0 = self.aircraft["Drag0"]
        self.lift0 = self.aircraft["Lift0"]
        self.gear = False
        self.flaps = 0
        self.pitch_target = 0.0
        self.pitch_rate_of_change = 3.0  # rate of change of the pitch [°/sec]
        self.ac_fuelflow = FuelFlow(ac=self.aircraft["Name"], eng=eng_name)
        if self.write:
            self.output = open("output.csv", 'w+')
            self.output.write(self.__get_header())
            self.output.flush()

    def __get_Q(self):
        self.pressure, self.density, self.temp = aero.atmos(self.altitude)
        self.Q = self.density * (self.tas**2)

    def __calculate_FPA(self):
        self.fpa = math.degrees(math.atan2(self.d_y, self.d_x))
        self.aoa = self.pitch - self.fpa

    def __calculate_lift(self):
        if self.gear:
            self.cl += self.aircraft["Gear"]["Lift"]
        if self.flaps > 0:
            self.cl += self.aircraft["Flaps"][self.flaps - 1]["Lift"]

        self.lift = self.lift0\
            + (0.5 * self.Q * self.aircraft["WingSpan"] * self.cl)
        self.lift *= 1.5

    def __calculate_drag(self, new: bool = True):
        if self.gear:
            self.cd += self.aircraft["Gear"]["Drag"]
        if self.flaps > 0:
            self.cd += self.aircraft["Flaps"][self.flaps - 1]["Drag"]
        self.drag = self.drag0\
            + (0.5 * self.Q * self.aircraft["WingSpan"] * self.cd)

    def __change_pitch(self) -> None:
        """
        Change pitch in relation of pitch target change of pitch occure with
        a 3 degrees per seconds change.
        """
        if self.pitch == self.pitch_target:
            return
        if self.pitch > self.pitch_target:
            self.pitch -= self.pitch_rate_of_change * self.dt
        elif self.pitch < self.pitch_target:
            self.pitch += self.pitch_rate_of_change * self.dt

    def run(self) -> bool:
        """Calculate aircraft performance till thrust reduction altitude

        Args:
            target_alt (float, optional):
                The thrust reduction altitude in meters.
                Defaults to 457.2m (1500.0 feets)

        Returns:
            bool: True if the phase is still valid, else False
        """
        if self.distance_x == 0:
            self.aoa = self.pitch
        self.cl, self.cd = self.lift_drag.get_data(self.aoa)
        self.__get_Q()
        self.__change_pitch()
        self.__calculate_drag()
        self.__calculate_lift()
        self.g = local_gravity(50.0, self.altitude)
        self.weight = self.mass * self.g
        max_thrust = self.ac_thrust.takeoff(alt=self.altitude / aero.ft,
                                            tas=self.tas / aero.kts)
        idle_thrust = self.ac_thrust.descent_idle(tas=self.tas / aero.kts,
                                                  alt=self.altitude / aero.ft)
        self.thrust = interpolate(self.thrust_lever, 0.0, 1.0, idle_thrust,
                                  max_thrust)
        fuelflow = self.ac_fuelflow.at_thrust(acthr=self.thrust / 2.0,
                                              alt=self.altitude / aero.ft)
        self.mass -= fuelflow * self.dt * 2
        self.t_d = self.thrust - self.drag\
            - (self.weight * math.sin(math.radians(self.pitch)))
        self.l_w = self.lift\
            - (self.weight * math.cos(math.radians(self.pitch)))\
            + (self.thrust * math.sin(math.radians(self.pitch)))
        acc = self.t_d / self.mass
        self.acc_x = acc * math.cos(math.radians(self.pitch))
        self.acc_y = acc * math.sin(math.radians(self.pitch))
        v_acc = self.l_w / self.mass
        self.acc_y += v_acc * math.cos(math.radians(self.pitch))
        self.acc_x += v_acc * math.sin(math.radians(self.pitch))
        self.d_x = (self.tas * self.dt) + 0.5 * self.acc_x * (self.dt**2)
        self.d_y = (self.v_y * self.dt) + 0.5 * self.acc_y * (self.dt**2)
        self.tas += self.acc_x * self.dt
        self.cas = aero.tas2cas(self.tas, self.altitude)
        self.v_y += self.acc_y * self.dt
        if self.altitude <= 0:
            self.altitude = 0
            if self.d_y < 0:
                self.d_y = 0
            if self.v_y < 0:
                self.v_y = 0
                self.vs = 0
        self.altitude += self.d_y
        self.distance_x += self.d_x
        self.vs = self.v_y / aero.fpm
        self.__calculate_FPA()
        if self.write:
            self.output.write(str(self))
            self.output.flush()

    def __str__(self):
        return f"{self.mass},{self.altitude},{self.pressure},{self.density},"\
               f"{self.temp},{self.cas},{self.tas},{self.v_y},{self.vs},"\
               f"{self.drag},{self.thrust},{self.t_d},{self.pitch},"\
               f"{self.fpa},{self.aoa},{self.Q},{self.acc_x},{self.acc_y},"\
               f"{self.distance_x},{self.d_x},{self.d_y},{self.phase},"\
               f"{self.cd},{self.drag0},{self.gear},{self.flaps},{self.cl},"\
               f"{self.lift},{self.weight},{self.l_w},{self.thrust_lever},"\
               f"{self.altitude / aero.ft},{self.g},{self.pitch_target}\n"

    def __get_header(self):
        return "Mass,Altitude,Pressure,Density,Temperature,Cas,Tas,Vy,VS,"\
               "Drag,Thrust,T-D,Pitch,FPA,AOA,Q,AccelerationX,AccelerationY,"\
               "DistanceX,Dx,Dy,Phase,Cd,Cd0,Gear,Flaps,Cl,Lift,Weight,L-W,"\
               "Thrust Limit,Altitude FT,Gravity,Target Pitch\n"
Esempio n. 4
0
class FuelFlow(object):
    """Fuel flow model based on ICAO emmision databank."""
    def __init__(self, ac, eng=None):
        """Initialize FuelFlow object.

        Args:
            ac (string): ICAO aircraft type (for example: A320).
            eng (string): Engine type (for example: CFM56-5A3).
                Leave empty to use the default engine specified
                by in the aircraft database.

        """
        self.aircraft = prop.aircraft(ac)

        if eng is None:
            eng = self.aircraft["engine"]["default"]

        self.engine = prop.engine(eng)

        self.thrust = Thrust(ac, eng)
        self.drag = Drag(ac)

        c3, c2, c1 = (
            self.engine["fuel_c3"],
            self.engine["fuel_c2"],
            self.engine["fuel_c1"],
        )
        # print(c3,c2,c1)

        self.fuel_flow_model = lambda x: c3 * x**3 + c2 * x**2 + c1 * x

    @ndarrayconvert
    def at_thrust(self, acthr, alt=0):
        """Compute the fuel flow at a given total thrust.

        Args:
            acthr (int or ndarray): The total net thrust of the aircraft (unit: N).
            alt (int or ndarray): Aircraft altitude (unit: ft).

        Returns:
            float: Fuel flow (unit: kg/s).

        """
        n_eng = self.aircraft["engine"]["number"]
        engthr = acthr / n_eng

        ratio = engthr / self.engine["max_thrust"]

        ff_sl = self.fuel_flow_model(ratio)
        ff_corr_alt = self.engine["fuel_ch"] * (engthr / 1000) * (alt *
                                                                  aero.ft)
        ff_eng = ff_sl + ff_corr_alt

        fuelflow = ff_eng * n_eng

        return fuelflow

    @ndarrayconvert
    def takeoff(self, tas, alt=None, throttle=1):
        """Compute the fuel flow at takeoff.

        The net thrust is first estimated based on the maximum thrust model
        and throttle setting. Then FuelFlow.at_thrust() is called to compted
        the thrust.

        Args:
            tas (int or ndarray): Aircraft true airspeed (unit: kt).
            alt (int or ndarray): Altitude of airport (unit: ft). Defaults to sea-level.
            throttle (float or ndarray): The throttle setting, between 0 and 1.
                Defaults to 1, which is at full thrust.

        Returns:
            float: Fuel flow (unit: kg/s).

        """
        Tmax = self.thrust.takeoff(tas=tas, alt=alt)
        fuelflow = throttle * self.at_thrust(Tmax)
        return fuelflow

    @ndarrayconvert
    def enroute(self, mass, tas, alt, path_angle=0):
        """Compute the fuel flow during climb, cruise, or descent.

        The net thrust is first estimated based on the dynamic equation.
        Then FuelFlow.at_thrust() is called to compted the thrust. Assuming
        no flap deflection and no landing gear extended.

        Args:
            mass (int or ndarray): Aircraft mass (unit: kg).
            tas (int or ndarray): Aircraft true airspeed (unit: kt).
            alt (int or ndarray): Aircraft altitude (unit: ft).
            path_angle (float or ndarray): Flight path angle (unit: degrees).

        Returns:
            float: Fuel flow (unit: kg/s).

        """
        D = self.drag.clean(mass=mass, tas=tas, alt=alt, path_angle=path_angle)

        # Convert angles from degrees to radians.
        gamma = np.radians(path_angle)

        T = D + mass * aero.g0 * np.sin(gamma)
        T_idle = self.thrust.descent_idle(tas=tas, alt=alt)
        T = np.where(T < 0, T_idle, T)

        fuelflow = self.at_thrust(T, alt)

        # do not return value outside performance boundary, with a margin of 20%
        T_max = self.thrust.climb(tas=0, alt=alt, roc=0)
        fuelflow = np.where(T > 1.20 * T_max, np.nan, fuelflow)

        return fuelflow

    def plot_model(self, plot=True):
        """Plot the engine fuel model, or return the pyplot object.

        Args:
            plot (bool): Display the plot or return an object.

        Returns:
            None or pyplot object.

        """
        import matplotlib.pyplot as plt

        xx = np.linspace(0, 1, 50)
        yy = self.fuel_flow_model(xx)
        # plt.scatter(self.x, self.y, color='k')
        plt.plot(xx, yy, "--", color="gray")
        if plot:
            plt.show()
        else:
            return plt
Esempio n. 5
0
class FuelFlow(object):
    """Fuel flow model based on ICAO emmision databank."""
    def __init__(self, ac, eng=None):
        """Initialize FuelFlow object.

        Args:
            ac (string): ICAO aircraft type (for example: A320).
            eng (string): Engine type (for example: CFM56-5A3).
                Leave empty to use the default engine specified
                by in the aircraft database.

        """
        self.aircraft = prop.aircraft(ac)

        if eng is None:
            eng = self.aircraft['engine']['default']

        self.engine = prop.engine(eng)

        self.thrust = Thrust(ac, eng)
        self.drag = Drag(ac)

        c3, c2, c1 = self.engine['fuel_c3'], self.engine[
            'fuel_c2'], self.engine['fuel_c1']
        # print(c3,c2,c1)

        self.fuel_flow_model = lambda x: c3 * x**3 + c2 * x**2 + c1 * x

    @ndarrayconvert
    def at_thrust(self, acthr, alt=0):
        """Compute the fuel flow at a given total thrust.

        Args:
            acthr (int or ndarray): The total net thrust of the aircraft (unit: N).
            alt (int or ndarray): Aicraft altitude (unit: ft).

        Returns:
            float: Fuel flow (unit: kg/s).

        """
        ratio = acthr / (self.engine['max_thrust'] *
                         self.aircraft['engine']['number'])
        fuelflow = self.fuel_flow_model(ratio) * self.aircraft['engine']['number'] \
            + self.engine['fuel_ch'] * (alt*aero.ft) * (acthr/1000)
        return fuelflow

    @ndarrayconvert
    def takeoff(self, tas, alt=None, throttle=1):
        """Compute the fuel flow at takeoff.

        The net thrust is first estimated based on the maximum thrust model
        and throttle setting. Then FuelFlow.at_thrust() is called to compted
        the thrust.

        Args:
            tas (int or ndarray): Aircraft true airspeed (unit: kt).
            alt (int or ndarray): Altitude of airport (unit: ft). Defaults to sea-level.
            throttle (float or ndarray): The throttle setting, between 0 and 1.
                Defaults to 1, which is at full thrust.

        Returns:
            float: Fuel flow (unit: kg/s).

        """
        Tmax = self.thrust.takeoff(tas=tas, alt=alt)
        fuelflow = throttle * self.at_thrust(Tmax)
        return fuelflow

    @ndarrayconvert
    def enroute(self, mass, tas, alt, path_angle=0):
        """Compute the fuel flow during climb, cruise, or descent.

        The net thrust is first estimated based on the dynamic equation.
        Then FuelFlow.at_thrust() is called to compted the thrust. Assuming
        no flap deflection and no landing gear extended.

        Args:
            mass (int or ndarray): Aircraft mass (unit: kg).
            tas (int or ndarray): Aircraft true airspeed (unit: kt).
            alt (int or ndarray): Aircraft altitude (unit: ft).
            path_angle (float or ndarray): Flight path angle (unit: ft).

        Returns:
            float: Fuel flow (unit: kg/s).

        """
        D = self.drag.clean(mass=mass, tas=tas, alt=alt, path_angle=path_angle)

        gamma = np.radians(path_angle)

        T = D + mass * aero.g0 * np.sin(gamma)
        T_idle = self.thrust.descent_idle(tas=tas, alt=alt)
        T = np.where(T < 0, T_idle, T)

        fuelflow = self.at_thrust(T, alt)

        return fuelflow

    def plot_model(self, plot=True):
        """Plot the engine fuel model, or return the pyplot object.

        Args:
            plot (bool): Display the plot or return an object.

        Returns:
            None or pyplot object.

        """
        import matplotlib.pyplot as plt
        xx = np.linspace(0, 1, 50)
        yy = self.fuel_flow_model(xx)
        # plt.scatter(self.x, self.y, color='k')
        plt.plot(xx, yy, '--', color='gray')
        if plot:
            plt.show()
        else:
            return plt
Esempio n. 6
0
import pandas as pd
import numpy as np
from openap import Thrust
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d.axes3d import Axes3D


thrust = Thrust(ac='A320', eng='CFM56-5B4')

print('-'*70)

T = thrust.takeoff(tas=100, alt=0)
print("thrust.takeoff(tas=100, alt=0)")
print(T)
print('-'*70)

T = thrust.climb(tas=200, alt=20000, roc=1000)
print("thrust.climb(tas=200, alt=20000, roc=1000)")
print(T)
print('-'*70)

T = thrust.cruise(tas=230, alt=32000)
print("thrust.cruise(tas=230, alt=32000)")
print(T)
print('-'*70)

T = thrust.climb(tas=[200], alt=[20000], roc=[1000])
print("thrust.climb(tas=[200], alt=[20000], roc=[1000])")
print(T)
print('-'*70)