Esempio n. 1
0
def is_grading_workflow_complete(workflow_uuid):
    """
    Check whether the grading workflow is complete.

    Args:
        workflow_uuid (str): The UUID of the grading workflow

    Returns:
        bool

    Raises:
        AIGradingRequestError
        AIGradingInternalError

    """
    try:
        return AIGradingWorkflow.is_workflow_complete(workflow_uuid)
    except AIGradingWorkflow.DoesNotExist:
        msg = (
            u"Could not retrieve grading workflow "
            u"with uuid {uuid} to check whether it's complete."
        ).format(uuid=workflow_uuid)
        raise AIGradingRequestError(msg)
    except DatabaseError:
        msg = (
            u"An unexpected error occurred while checking "
            u"the grading workflow with uuid {uuid} for completeness"
        ).format(uuid=workflow_uuid)
        raise AIGradingInternalError(msg)
Esempio n. 2
0
def is_grading_workflow_complete(workflow_uuid):
    """
    Check whether the grading workflow is complete.

    Args:
        workflow_uuid (str): The UUID of the grading workflow

    Returns:
        bool

    Raises:
        AIGradingRequestError
        AIGradingInternalError

    """
    try:
        return AIGradingWorkflow.is_workflow_complete(workflow_uuid)
    except AIGradingWorkflow.DoesNotExist:
        msg = (u"Could not retrieve grading workflow "
               u"with uuid {uuid} to check whether it's complete.").format(
                   uuid=workflow_uuid)
        raise AIGradingRequestError(msg)
    except DatabaseError:
        msg = (
            u"An unexpected error occurred while checking "
            u"the grading workflow with uuid {uuid} for completeness").format(
                uuid=workflow_uuid)
        raise AIGradingInternalError(msg)
Esempio n. 3
0
    def handle(self, *args, **options):
        """
        Execute the command.

        Args:
            course_id (unicode): The ID of the course to create submissions/workflows in.
            item_id (unicode): The ID of the problem in the course.
            num_submissions (int): The number of submissions/workflows to create.
            algorithm_id (unicode): The ID of the ML algorithm to use ("fake" or "ease")

        Raises:
            CommandError

        """
        if len(args) < 4:
            raise CommandError(u"Usage: simulate_ai_grading_error {}".format(
                self.args))

        # Parse arguments
        course_id = args[0].decode('utf-8')
        item_id = args[1].decode('utf-8')
        num_submissions = int(args[2])
        algorithm_id = args[3].decode('utf-8')

        # Create the rubric model
        rubric = rubric_from_dict(self.RUBRIC)

        # Train classifiers
        print u"Training classifiers using {algorithm_id}...".format(
            algorithm_id=algorithm_id)
        algorithm = AIAlgorithm.algorithm_for_id(algorithm_id)
        classifier_data = {
            criterion_name: algorithm.train_classifier(example)
            for criterion_name, example in self.EXAMPLES.iteritems()
        }
        print u"Successfully trained classifiers."

        # Create the classifier set
        classifier_set = AIClassifierSet.create_classifier_set(
            classifier_data, rubric, algorithm_id, course_id, item_id)
        print u"Successfully created classifier set with id {}".format(
            classifier_set.pk)

        # Create submissions and grading workflows
        for num in range(num_submissions):
            student_item = {
                'course_id': course_id,
                'item_id': item_id,
                'item_type': 'openassessment',
                'student_id': "{base}_{num}".format(base=self.STUDENT_ID,
                                                    num=num)
            }
            submission = sub_api.create_submission(student_item, self.ANSWER)
            workflow = AIGradingWorkflow.start_workflow(
                submission['uuid'], self.RUBRIC, algorithm_id)
            workflow.classifier_set = classifier_set
            workflow.save()
            print u"{num}: Created incomplete grading workflow with UUID {uuid}".format(
                num=num, uuid=workflow.uuid)
    def handle(self, *args, **options):
        """
        Execute the command.

        Args:
            course_id (unicode): The ID of the course to create submissions/workflows in.
            item_id (unicode): The ID of the problem in the course.
            num_submissions (int): The number of submissions/workflows to create.
            algorithm_id (unicode): The ID of the ML algorithm to use ("fake" or "ease")

        Raises:
            CommandError

        """
        if len(args) < 4:
            raise CommandError(u"Usage: simulate_ai_grading_error {}".format(self.args))

        # Parse arguments
        course_id = args[0].decode('utf-8')
        item_id = args[1].decode('utf-8')
        num_submissions = int(args[2])
        algorithm_id = args[3].decode('utf-8')

        # Create the rubric model
        rubric = rubric_from_dict(self.RUBRIC)

        # Train classifiers
        print u"Training classifiers using {algorithm_id}...".format(algorithm_id=algorithm_id)
        algorithm = AIAlgorithm.algorithm_for_id(algorithm_id)
        classifier_data = {
            criterion_name: algorithm.train_classifier(example)
            for criterion_name, example in self.EXAMPLES.iteritems()
        }
        print u"Successfully trained classifiers."

        # Create the classifier set
        classifier_set = AIClassifierSet.create_classifier_set(
            classifier_data, rubric, algorithm_id, course_id, item_id
        )
        print u"Successfully created classifier set with id {}".format(classifier_set.pk)

        # Create submissions and grading workflows
        for num in range(num_submissions):
            student_item = {
                'course_id': course_id,
                'item_id': item_id,
                'item_type': 'openassessment',
                'student_id': "{base}_{num}".format(base=self.STUDENT_ID, num=num)
            }
            submission = sub_api.create_submission(student_item, self.ANSWER)
            workflow = AIGradingWorkflow.start_workflow(
                submission['uuid'], self.RUBRIC, algorithm_id
            )
            workflow.classifier_set = classifier_set
            workflow.save()
            print u"{num}: Created incomplete grading workflow with UUID {uuid}".format(
                num=num, uuid=workflow.uuid
            )
Esempio n. 5
0
    def _assert_complete(self, training_done=None, grading_done=None):
        """
        Asserts that the Training and Grading are of a given completion status
        Serves as an assertion for a number of unit tests.

        Args:
            training_done (bool): whether the user expects there to be unfinished training workflows
            grading_done (bool): whether the user expects there to be unfinished grading workflows
        """
        incomplete_training_workflows = AITrainingWorkflow.get_incomplete_workflows(course_id=COURSE_ID, item_id=ITEM_ID)
        incomplete_grading_workflows = AIGradingWorkflow.get_incomplete_workflows(course_id=COURSE_ID, item_id=ITEM_ID)
        if training_done is not None:
            self.assertEqual(self._is_empty_generator(incomplete_training_workflows), training_done)
        if grading_done is not None:
            self.assertEqual(self._is_empty_generator(incomplete_grading_workflows), grading_done)
Esempio n. 6
0
    def setUp(self):
        """
        Create a submission and grading workflow.
        """
        # Create a submission
        submission = sub_api.create_submission(STUDENT_ITEM, ANSWER)
        self.submission_uuid = submission['uuid']

        # Create a workflow for the submission
        workflow = AIGradingWorkflow.start_workflow(self.submission_uuid, RUBRIC, ALGORITHM_ID)
        self.workflow_uuid = workflow.uuid

        # Associate the workflow with classifiers
        rubric = rubric_from_dict(RUBRIC)
        classifier_set = AIClassifierSet.create_classifier_set(
            self.CLASSIFIERS, rubric, ALGORITHM_ID, STUDENT_ITEM.get('course_id'), STUDENT_ITEM.get('item_id')
        )
        workflow.classifier_set = classifier_set
        workflow.save()
Esempio n. 7
0
    def setUp(self):
        """
        Create a submission and grading workflow.
        """
        # Create a submission
        submission = sub_api.create_submission(STUDENT_ITEM, ANSWER)
        self.submission_uuid = submission['uuid']

        # Create a workflow for the submission
        workflow = AIGradingWorkflow.start_workflow(self.submission_uuid,
                                                    RUBRIC, ALGORITHM_ID)
        self.workflow_uuid = workflow.uuid

        # Associate the workflow with classifiers
        rubric = rubric_from_dict(RUBRIC)
        classifier_set = AIClassifierSet.create_classifier_set(
            self.CLASSIFIERS, rubric, ALGORITHM_ID,
            STUDENT_ITEM.get('course_id'), STUDENT_ITEM.get('item_id'))
        workflow.classifier_set = classifier_set
        workflow.save()
Esempio n. 8
0
    def _assert_complete(self, training_done=None, grading_done=None):
        """
        Asserts that the Training and Grading are of a given completion status
        Serves as an assertion for a number of unit tests.

        Args:
            training_done (bool): whether the user expects there to be unfinished training workflows
            grading_done (bool): whether the user expects there to be unfinished grading workflows
        """
        incomplete_training_workflows = AITrainingWorkflow.get_incomplete_workflows(
            course_id=COURSE_ID, item_id=ITEM_ID)
        incomplete_grading_workflows = AIGradingWorkflow.get_incomplete_workflows(
            course_id=COURSE_ID, item_id=ITEM_ID)
        if training_done is not None:
            self.assertEqual(
                self._is_empty_generator(incomplete_training_workflows),
                training_done)
        if grading_done is not None:
            self.assertEqual(
                self._is_empty_generator(incomplete_grading_workflows),
                grading_done)
Esempio n. 9
0
def on_init(submission_uuid, rubric=None, algorithm_id=None):
    """
    Submit a response for AI assessment.
    This will:
        (a) create a workflow (database record) to track the grading task
        (b) if classifiers exist for the rubric, schedule an asynchronous grading task.

    Args:
        submission_uuid (str): The UUID of the submission to assess.

    Keyword Arguments:
        rubric (dict): Serialized rubric model.
        algorithm_id (unicode): Use only classifiers trained with the specified algorithm.

    Returns:
        grading_workflow_uuid (str): The UUID of the grading workflow.
            Usually the caller of `submit()` won't need this (since the workers
            are parameterized by grading workflow UUID), but it's
            useful for testing.

    Raises:
        AIGradingRequestError
        AIGradingInternalError

    Example Usage:

    >>> on_init('74a9d63e8a5fea369fd391d07befbd86ae4dc6e2', rubric, 'ease')
    '10df7db776686822e501b05f452dc1e4b9141fe5'

    """
    if rubric is None:
        raise AIGradingRequestError(u'No rubric provided')

    if algorithm_id is None:
        raise AIGradingRequestError(u'No algorithm ID provided')

    try:
        workflow = AIGradingWorkflow.start_workflow(submission_uuid, rubric, algorithm_id)
    except (sub_api.SubmissionNotFoundError, sub_api.SubmissionRequestError) as ex:
        msg = (
            u"An error occurred while retrieving the "
            u"submission with UUID {uuid}: {ex}"
        ).format(uuid=submission_uuid, ex=ex)
        raise AIGradingRequestError(msg)
    except InvalidRubric as ex:
        msg = (
            u"An error occurred while parsing the serialized "
            u"rubric {rubric}: {ex}"
        ).format(rubric=rubric, ex=ex)
        raise AIGradingRequestError(msg)
    except (sub_api.SubmissionInternalError, DatabaseError) as ex:
        msg = (
            u"An unexpected error occurred while submitting an "
            u"essay for AI grading: {ex}"
        ).format(ex=ex)
        logger.exception(msg)
        raise AIGradingInternalError(msg)

    # If we find classifiers for this rubric/algorithm
    # then associate the classifiers with the workflow
    # and schedule a grading task.
    # Otherwise, the task will need to be scheduled later,
    # once the classifiers have been trained.
    if workflow.classifier_set is not None:
        try:
            grading_tasks.grade_essay.apply_async(args=[workflow.uuid])
            logger.info((
                u"Scheduled grading task for AI grading workflow with UUID {workflow_uuid} "
                u"(submission UUID = {sub_uuid}, algorithm ID = {algorithm_id})"
            ).format(workflow_uuid=workflow.uuid, sub_uuid=submission_uuid, algorithm_id=algorithm_id))
            return workflow.uuid
        except (DatabaseError,) + ANTICIPATED_CELERY_ERRORS as ex:
            msg = (
                u"An unexpected error occurred while scheduling the "
                u"AI grading task for the submission with UUID {uuid}: {ex}"
            ).format(uuid=submission_uuid, ex=ex)
            logger.exception(msg)
            raise AIGradingInternalError(msg)
    else:
        logger.info((
            u"Cannot schedule a grading task for AI grading workflow with UUID {workflow_uuid} "
            u"because no classifiers are available for the rubric associated with submission {sub_uuid} "
            u"for the algorithm {algorithm_id}"
        ).format(workflow_uuid=workflow.uuid, sub_uuid=submission_uuid, algorithm_id=algorithm_id))