Esempio n. 1
0
def analyzeImage(original):
	scaleImage = cv.cvCreateImage(cv.cvSize(int(original.width*scale), int(original.height*scale)), 8, 3)
	cv.cvResize(original, scaleImage)

	# Create 1-channel image for the egdes
	edgeImage = cv.cvCreateImage(cv.cvGetSize(scaleImage), 8, 1)

	# Retrieve edges
	edgeDetector.findBWEdges(scaleImage, edgeImage, edgeThreshold1, edgeThreshold2)

	# Get cuts
	cuts = lib.findGoldenMeans(cv.cvGetSize(scaleImage))

	# Run along
	allComponents = []
	for cut in cuts:
		cutComponents = analyzeCut(scaleImage, edgeImage, cut)
		allComponents.append(cutComponents)

	# Get the collected component_dictionaries
	for dict in allComponents:
		lib.drawBoundingBoxes(original, dict, scale)

	# Draw the margins
	for cut in cuts:
		lib.drawMargin(original, cut, margin, scale)
		#include if super margen is need to drawn
		#lib.drawMargin(original, cut, superMargin, scale)

	return (original, allComponents)
Esempio n. 2
0
	def _cv_to_pygame(self,frame,channel=-1) :

		# scale the image to size of the window
		cvt_scale = cv.cvCreateImage(cv.cvSize(self.image_dims[0],self.image_dims[1]),frame.depth,frame.nChannels)
		#cv.cvResize(frame,cvt_scale,cv.CV_INTER_LINEAR)
		cv.cvResize(frame,cvt_scale,cv.CV_INTER_NN)

		# need to convert the colorspace differently depending on where the image came from
		cvt_color = cv.cvCreateImage(cv.cvSize(cvt_scale.width,cvt_scale.height),cvt_scale.depth,3)
		if frame.nChannels == 3 :
			# frame is in BGR format, convert it to RGB so the sky isn't orange
			cv.cvCvtColor(cvt_scale,cvt_color,cv.CV_BGR2RGB)
		elif frame.nChannels == 1 : # image has only one channel, iow 1 color
			if channel == 0 :
				cv.cvMerge(frame,None,None,None,cvt_color)
			elif channel == 1 :
				cv.cvMerge(None,frame,None,None,cvt_color)
			elif channel == 2 :
				cv.cvMerge(None,None,frame,None,cvt_color)
			elif channel == 3 :
				cv.cvMerge(None,None,None,frame,cvt_color)
			else :
				cv.cvCvtColor(cvt_scale,cvt_color,cv.CV_GRAY2RGB)

		# create a pygame surface
		frame_surface=pygame.image.frombuffer(cvt_color.imageData,self.image_dims,'RGB')

		return frame_surface
Esempio n. 3
0
	def detect_faces(self, img_grey):
		""" Detect faces within an image, then draw around them.
			The default parameters (scale_factor=1.1, min_neighbors=3, flags=0) are tuned 
			for accurate yet slow object detection. For a faster operation on real video 
			images the settings are: 
			scale_factor=1.2, min_neighbors=2, flags=CV_HAAR_DO_CANNY_PRUNING, 
			min_size=<minimum possible face size
		"""
		min_size								= cv.cvSize(20,20)
		self.image_scale						= 1.3
		haar_scale								= 1.2
		min_neighbors							= 2
		haar_flags								= 0

		# Create a small image for better performance
		small_size								= cv.cvSize(cv.cvRound(img_grey.width/self.image_scale),cv.cvRound(img_grey.height/self.image_scale))
		small_img								= cv.cvCreateImage(small_size, 8, 1)
		cv.cvResize(img_grey, small_img, cv.CV_INTER_LINEAR)
		cv.cvEqualizeHist(small_img, small_img)
		cv.cvClearMemStorage(self.faces_storage)

		if(self.cascade):
			t									= cv.cvGetTickCount();
			faces								= cv.cvHaarDetectObjects(small_img,
																		self.cascade,
																		self.faces_storage,
																		haar_scale,
																		min_neighbors,
																		haar_flags,
																		min_size)
			t									= cv.cvGetTickCount() - t
			cv.cvReleaseImage(small_img)
			#print "detection time = %gms" % (t/(cvGetTickFrequency()*1000.));
			return faces
Esempio n. 4
0
    def detect_faces(self, img_grey):
        """ Detect faces within an image, then draw around them.
			The default parameters (scale_factor=1.1, min_neighbors=3, flags=0) are tuned 
			for accurate yet slow object detection. For a faster operation on real video 
			images the settings are: 
			scale_factor=1.2, min_neighbors=2, flags=CV_HAAR_DO_CANNY_PRUNING, 
			min_size=<minimum possible face size
		"""
        min_size = cv.cvSize(20, 20)
        self.image_scale = 1.3
        haar_scale = 1.2
        min_neighbors = 2
        haar_flags = 0

        # Create a small image for better performance
        small_size = cv.cvSize(cv.cvRound(img_grey.width / self.image_scale),
                               cv.cvRound(img_grey.height / self.image_scale))
        small_img = cv.cvCreateImage(small_size, 8, 1)
        cv.cvResize(img_grey, small_img, cv.CV_INTER_LINEAR)
        cv.cvEqualizeHist(small_img, small_img)
        cv.cvClearMemStorage(self.faces_storage)

        if (self.cascade):
            t = cv.cvGetTickCount()
            faces = cv.cvHaarDetectObjects(small_img, self.cascade,
                                           self.faces_storage, haar_scale,
                                           min_neighbors, haar_flags, min_size)
            t = cv.cvGetTickCount() - t
            cv.cvReleaseImage(small_img)
            #print "detection time = %gms" % (t/(cvGetTickFrequency()*1000.));
            return faces
Esempio n. 5
0
def depthmatrix(leftimage, rightimage, precision=4, mask=0):
    """Returns a 3-channel 32bit floating-point distance matrix. Channels 1,2,3 = x,y,z coordinates of that point.
    Precision is the number of times to downsample mask. Downsample is the number of loops to 
    go through with successively smaller match areas. If mask is set, only pixels in the mask are set."""
    
    info = cv.cvGetSize(leftimage)
    width = info.width
    height = info.height
    precision_pixels = (2**precision)
    downsampled_size = cv.cvSize(width/precision_pixels, height/precision_pixels)
    print "Precision of", downsampled_size.width, downsampled_size.height, "px"
    if mask:
        downsampled_mask = cv.cvCreateImage(downsampled_size, 8, 1)
        cv.cvResize(mask, downsampled_mask)
    matx = cv.cvCreateImage(downsampled_size, 8, 1)
    maty = cv.cvCreateImage(downsampled_size, 8, 1)
    matz = cv.cvCreateImage(downsampled_size, 8, 1)
    for i in xrange(width/precision_pixels):
        for j in xrange(height/precision_pixels):
            if mask:
                if (not cv.cvGetReal2D(downsampled_mask, j, i)):
                    continue
            x = i*precision
            y = j*precision
            depth = depthmatch(x+precision_pixels/2, y+precision_pixels/2, leftimage, rightimage, roi=precision_pixels, buf=precision_pixels*2)
            #print i, j
            # fill in result matrix if mask wasn't 0 at this point (X,Y,Z)
            cv.cvSetReal2D(matx, j, i, int(depth[0][0]))
            cv.cvSetReal2D(maty, j, i, int(depth[0][1]))
            cv.cvSetReal2D(matz, j, i, int(depth[0][2]))
    return matz
Esempio n. 6
0
	def _get_scaled_frame(self,frame=None) :
		if frame is None :
			frame = self._get_cv_frame()
		scale = (480,320)
		scaled = cv.cvCreateImage(cv.cvSize(scale[0],scale[1]),frame.depth,frame.nChannels)
		#cv.cvResize(frame,scaled,cv.CV_INTER_LINEAR)
		cv.cvResize(frame,scaled,cv.CV_INTER_NN)
		return scaled
Esempio n. 7
0
def putoriginal(fname, img):
    ori_img = highgui.cvLoadImage (fname)
    ori_img_thumb = cv.cvCreateImage(cv.cvSize(ori_img.width/4, ori_img.height/4), 8,3)
    cv.cvResize(ori_img, ori_img_thumb)
    for x in range(ori_img_thumb.height):
        for y in range(ori_img_thumb.width):
            cv.cvSet2D(img, x, y, cv.cvGet2D(ori_img_thumb, x, y))
    return 
Esempio n. 8
0
def putoriginal(fname, img):
    ori_img = highgui.cvLoadImage(fname)
    ori_img_thumb = cv.cvCreateImage(
        cv.cvSize(ori_img.width / 4, ori_img.height / 4), 8, 3)
    cv.cvResize(ori_img, ori_img_thumb)
    for x in range(ori_img_thumb.height):
        for y in range(ori_img_thumb.width):
            cv.cvSet2D(img, x, y, cv.cvGet2D(ori_img_thumb, x, y))
    return
Esempio n. 9
0
def _detect(image):
    """ Detects faces on `image`
    Parameters:
        @image: image file path

    Returns:
        [((x1, y1), (x2, y2)), ...] List of coordenates for top-left
                                    and bottom-right corner
    """
    # the OpenCV API says this function is obsolete, but we can't
    # cast the output of cvLoad to a HaarClassifierCascade, so use
    # this anyways the size parameter is ignored
    capture = cvCreateFileCapture(image) 

    if not capture:
        return []

    frame = cvQueryFrame(capture)
    if not frame:
        return []

    img = cvCreateImage(cvSize(frame.width, frame.height),
                        IPL_DEPTH_8U, frame.nChannels)
    cvCopy(frame, img)

    # allocate temporary images
    gray          = cvCreateImage((img.width, img.height),
                                  COPY_DEPTH, COPY_CHANNELS)
    width, height = (cvRound(img.width / IMAGE_SCALE),
                     cvRound(img.height / IMAGE_SCALE))
    small_img     = cvCreateImage((width, height), COPY_DEPTH, COPY_CHANNELS)

    # convert color input image to grayscale
    cvCvtColor(img, gray, CV_BGR2GRAY)

    # scale input image for faster processing
    cvResize(gray, small_img, CV_INTER_LINEAR)
    cvEqualizeHist(small_img, small_img)
    cvClearMemStorage(STORAGE)

    coords = []
    for haar_file in CASCADES:
        cascade = cvLoadHaarClassifierCascade(haar_file, cvSize(1, 1))
        if cascade:
            faces = cvHaarDetectObjects(small_img, cascade, STORAGE, HAAR_SCALE,
                                        MIN_NEIGHBORS, HAAR_FLAGS, MIN_SIZE) or []
            for face_rect in faces:
                # the input to cvHaarDetectObjects was resized, so scale the 
                # bounding box of each face and convert it to two CvPoints
                x, y = face_rect.x, face_rect.y
                pt1 = (int(x * IMAGE_SCALE), int(y * IMAGE_SCALE))
                pt2 = (int((x + face_rect.width) * IMAGE_SCALE),
                       int((y + face_rect.height) * IMAGE_SCALE))
                coords.append((pt1, pt2))
    return coords
Esempio n. 10
0
def _detect(image):
    """ Detects faces on `image`
    Parameters:
        @image: image file path

    Returns:
        [((x1, y1), (x2, y2)), ...] List of coordenates for top-left
                                    and bottom-right corner
    """
    # the OpenCV API says this function is obsolete, but we can't
    # cast the output of cvLoad to a HaarClassifierCascade, so use
    # this anyways the size parameter is ignored
    capture = cvCreateFileCapture(image)

    if not capture:
        return []

    frame = cvQueryFrame(capture)
    if not frame:
        return []

    img = cvCreateImage(cvSize(frame.width, frame.height), IPL_DEPTH_8U,
                        frame.nChannels)
    cvCopy(frame, img)

    # allocate temporary images
    gray = cvCreateImage((img.width, img.height), COPY_DEPTH, COPY_CHANNELS)
    width, height = (cvRound(img.width / IMAGE_SCALE),
                     cvRound(img.height / IMAGE_SCALE))
    small_img = cvCreateImage((width, height), COPY_DEPTH, COPY_CHANNELS)

    # convert color input image to grayscale
    cvCvtColor(img, gray, CV_BGR2GRAY)

    # scale input image for faster processing
    cvResize(gray, small_img, CV_INTER_LINEAR)
    cvEqualizeHist(small_img, small_img)
    cvClearMemStorage(STORAGE)

    coords = []
    for haar_file in CASCADES:
        cascade = cvLoadHaarClassifierCascade(haar_file, cvSize(1, 1))
        if cascade:
            faces = cvHaarDetectObjects(small_img, cascade, STORAGE,
                                        HAAR_SCALE, MIN_NEIGHBORS, HAAR_FLAGS,
                                        MIN_SIZE) or []
            for face_rect in faces:
                # the input to cvHaarDetectObjects was resized, so scale the
                # bounding box of each face and convert it to two CvPoints
                x, y = face_rect.x, face_rect.y
                pt1 = (int(x * IMAGE_SCALE), int(y * IMAGE_SCALE))
                pt2 = (int((x + face_rect.width) * IMAGE_SCALE),
                       int((y + face_rect.height) * IMAGE_SCALE))
                coords.append((pt1, pt2))
    return coords
Esempio n. 11
0
 def resizeImage(self, image_location, ouput_location, size):
     """
         resizes the image to a rectangle with the given size and saves it
     """
     width = size
     height = size
     
     input_image = highgui.cvLoadImage(image_location, 1) # flag: >0 the loaded image is forced to be a 3-channel color image
     
     output_image = cv.cvCreateImage(cv.cvSize(cv.cvRound(width), cv.cvRound(height)), 8, 3);
     cv.cvResize(input_image, output_image, cv.CV_INTER_LINEAR);
     highgui.cvSaveImage(ouput_location, output_image) # save the image to file
Esempio n. 12
0
    def read(self):
        """Capture the current frame from OpenCV, returns a cvMat object"""

        # Capture the current frame
        frame = highgui.cvQueryFrame(self._capture)

        # Do we need to scale the captures?
        if self.scale:
            scaled_frame = cv.cvCreateImage(self.cv_capture_dims, frame.depth, frame.nChannels)
            cv.cvResize(frame, scaled_frame, self.interplation_method)
            frame = scaled_frame

        return frame
Esempio n. 13
0
    def resize(self, width, height):
        """
        Image resizing function.

        Arguments:
        - self: The main object pointer.
        - width: The new image width.
        - height: The new image height.
        """

        tmp = cv.cvCreateImage( cv.cvSize( width, height ), 8, 3 )
        cv.cvResize( self.__image, tmp, cv.CV_INTER_AREA )
        return tmp
Esempio n. 14
0
    def get_eye(self):
        eyes = False

        face     = self.cap.get_area(commons.haar_cds['Face'])

        if face:
            cvtile = cv.cvCreateMat(128,128,cv.CV_8UC3)
            bwtile = cv.cvCreateMat(128,128,cv.CV_8U)
            areas    = [ (pt[1].x - pt[0].x)*(pt[1].y - pt[0].y) for pt in face ]
            startF   = face[areas.index(max(areas))][0]
            endF     = face[areas.index(max(areas))][1]
            facerect     = self.cap.rect(startF.x, startF.y, endF.x - startF.x, endF.y - startF.y)

            if not facerect:
                return

            cv.cvResize(facerect, cvtile)

            cv.cvCvtColor( cvtile, bwtile, cv.CV_BGR2GRAY )

            leye,reye,lcp,rcp = self.fel.locateEyes(bwtile)
            leye = pv.Point(leye)
            reye = pv.Point(reye)

            leye_x = int((float(leye.X())*facerect.width/cvtile.width) + startF.x)
            leye_y = int((float(leye.Y())*facerect.height/cvtile.height) + startF.y)

            reye_x = int((float(reye.X())*facerect.width/cvtile.width) + startF.x)
            reye_y = int((float(reye.Y())*facerect.height/cvtile.height) + startF.y)

            eye_rect = { "startX" : leye_x - 5,
                         "startY" : leye_y - 5,
                         "endX"   : leye_x + 5,
                         "endY"   : leye_y + 5}

            #self.cap.image(self.cap.rect(leye_x - 5, leye_y - 5, 20, 20))

            if not hasattr(self.cap, "leye"):
                self.cap.add( Point("point", "leye", [int(leye_x), int(leye_y)], parent=self.cap, follow=True) )
            else:
                self.cap.add( Point("point", "reye", [int(reye_x), int(reye_y)], parent=self.cap, follow=True) )

            # Shows the face rectangle
            #self.cap.add( Graphic("rect", "Face", ( startF.x, startF.y ), (endF.x, endF.y), parent=self.cap) )


        self.foreheadOrig = None

        return False
Esempio n. 15
0
 def __normImage(self, img, length):
     #print "Generating norm image..."
     width = length
     height = length
     gray = cv.cvCreateImage(cv.cvSize(img.width,img.height), 8, 1);
     small_img = cv.cvCreateImage(cv.cvSize(cv.cvRound(width),
                                        cv.cvRound(height)), 8, 1 );
 
     # convert color input image to grayscale
     cv.cvCvtColor(img, gray, cv.CV_BGR2GRAY);
     # scale input image for faster processing
     cv.cvResize(gray, small_img, cv.CV_INTER_LINEAR);
     cv.cvEqualizeHist(small_img, small_img);
     #cvClearMemStorage(self.storage);
     norm_image = small_img # save the 'normalized image'
     return norm_image
Esempio n. 16
0
    def __findedge(self, filename): 
        tmpimg = highgui.cvLoadImage (filename)
        self.img = cv.cvCreateImage(cv.cvSize(int(tmpimg.width * self.enlarge), int(tmpimg.height * self.enlarge)), 8, 3)
        cv.cvResize(tmpimg, self.img, cv.CV_INTER_LINEAR)
        if (self.drawimage):
            self.drawimg = cv.cvCloneImage(self.img)
        else:
            self.drawimg = cv.cvCreateImage(cv.cvGetSize(self.img), 8, 3)
        greyimg = cv.cvCreateImage(cv.cvSize(self.img.width, self.img.height), 8,1)
        cv.cvCvtColor(self.img, greyimg, cv.CV_BGR2GRAY)
        self.allcurve = []
        for i in range(80, 200, 20):
            bimg = cv.cvCloneImage(greyimg) 
            cv.cvSmooth(bimg, bimg, cv.CV_MEDIAN, 9)
#            cv.cvSmooth(bimg, bimg, cv.CV_BILATERAL, 9)
#            cv.cvSmooth(bimg, bimg, cv.CV_BLUR, 9)
#            cv.cvSmooth(bimg, bimg, cv.CV_BLUR, 9)
            cv.cvThreshold(greyimg, bimg, i, 255, cv.CV_THRESH_BINARY)
            self.__findcurve(bimg)
Esempio n. 17
0
 def __findedge(self, filename):
     tmpimg = highgui.cvLoadImage(filename)
     self.img = cv.cvCreateImage(
         cv.cvSize(int(tmpimg.width * self.enlarge),
                   int(tmpimg.height * self.enlarge)), 8, 3)
     cv.cvResize(tmpimg, self.img, cv.CV_INTER_LINEAR)
     if (self.drawimage):
         self.drawimg = cv.cvCloneImage(self.img)
     else:
         self.drawimg = cv.cvCreateImage(cv.cvGetSize(self.img), 8, 3)
     greyimg = cv.cvCreateImage(cv.cvSize(self.img.width, self.img.height),
                                8, 1)
     cv.cvCvtColor(self.img, greyimg, cv.CV_BGR2GRAY)
     self.allcurve = []
     for i in range(80, 200, 20):
         bimg = cv.cvCloneImage(greyimg)
         cv.cvSmooth(bimg, bimg, cv.CV_MEDIAN, 9)
         #            cv.cvSmooth(bimg, bimg, cv.CV_BILATERAL, 9)
         #            cv.cvSmooth(bimg, bimg, cv.CV_BLUR, 9)
         #            cv.cvSmooth(bimg, bimg, cv.CV_BLUR, 9)
         cv.cvThreshold(greyimg, bimg, i, 255, cv.CV_THRESH_BINARY)
         self.__findcurve(bimg)
Esempio n. 18
0
	def detect_face(self, img):
		""" Detect faces within an image, then draw around them.
			The default parameters (scale_factor=1.1, min_neighbors=3, flags=0) are tuned 
			for accurate yet slow object detection. For a faster operation on real video 
			images the settings are: 
			scale_factor=1.2, min_neighbors=2, flags=CV_HAAR_DO_CANNY_PRUNING, 
			min_size=<minimum possible face size
		"""
		min_size								= cv.cvSize(20,20)
		image_scale								= 1.3
		haar_scale								= 1.2
		min_neighbors							= 2
		haar_flags								= 0
		gray									= cv.cvCreateImage(cv.cvSize(img.width,img.height), 8, 1)
		small_img								= cv.cvCreateImage(cv.cvSize(cv.cvRound(img.width/image_scale),
												  cv.cvRound(img.height/image_scale)), 8, 1)
		cv.cvCvtColor(img, gray, cv.CV_BGR2GRAY)
		cv.cvResize(gray, small_img, cv.CV_INTER_LINEAR)
		cv.cvEqualizeHist(small_img, small_img)
		cv.cvClearMemStorage(self.storage)

		if(self.cascade):
			t									= cv.cvGetTickCount();
			faces								= cv.cvHaarDetectObjects(small_img,
																		self.cascade,
																		self.storage,
																		haar_scale,
																		min_neighbors,
																		haar_flags,
																		min_size)
			t									= cv.cvGetTickCount() - t
			#print "detection time = %gms" % (t/(cvGetTickFrequency()*1000.));
			if faces:
				for r in faces:
					pt1							= cv.cvPoint(int(r.x*image_scale), int(r.y*image_scale))
					pt2							= cv.cvPoint(int((r.x+r.width)*image_scale),
																int((r.y+r.height)*image_scale))
					cv.cvRectangle(img, pt1, pt2, cv.CV_RGB(255,0,0), 3, 8, 0)
		return img
Esempio n. 19
0
    def detect_face(self, img):
        """ Detect faces within an image, then draw around them.
			The default parameters (scale_factor=1.1, min_neighbors=3, flags=0) are tuned 
			for accurate yet slow object detection. For a faster operation on real video 
			images the settings are: 
			scale_factor=1.2, min_neighbors=2, flags=CV_HAAR_DO_CANNY_PRUNING, 
			min_size=<minimum possible face size
		"""
        min_size = cv.cvSize(20, 20)
        image_scale = 1.3
        haar_scale = 1.2
        min_neighbors = 2
        haar_flags = 0
        gray = cv.cvCreateImage(cv.cvSize(img.width, img.height), 8, 1)
        small_img = cv.cvCreateImage(
            cv.cvSize(cv.cvRound(img.width / image_scale),
                      cv.cvRound(img.height / image_scale)), 8, 1)
        cv.cvCvtColor(img, gray, cv.CV_BGR2GRAY)
        cv.cvResize(gray, small_img, cv.CV_INTER_LINEAR)
        cv.cvEqualizeHist(small_img, small_img)
        cv.cvClearMemStorage(self.storage)

        if (self.cascade):
            t = cv.cvGetTickCount()
            faces = cv.cvHaarDetectObjects(small_img, self.cascade,
                                           self.storage, haar_scale,
                                           min_neighbors, haar_flags, min_size)
            t = cv.cvGetTickCount() - t
            #print "detection time = %gms" % (t/(cvGetTickFrequency()*1000.));
            if faces:
                for r in faces:
                    pt1 = cv.cvPoint(int(r.x * image_scale),
                                     int(r.y * image_scale))
                    pt2 = cv.cvPoint(int((r.x + r.width) * image_scale),
                                     int((r.y + r.height) * image_scale))
                    cv.cvRectangle(img, pt1, pt2, cv.CV_RGB(255, 0, 0), 3, 8,
                                   0)
        return img
Esempio n. 20
0
	def read(self):
		frame=self.input.read()
		scaled_frame=cv.cvCreateImage(cv.cvSize(self.new_size[0],self.new_size[1]),frame.depth,frame.nChannels)
		cv.cvResize(frame,scaled_frame,self.interplation_method)
		return scaled_frame
Esempio n. 21
0
    def get_eye(self):
        eyes = False

        face = self.cap.get_area(commons.haar_cds['Face'])

        if face:
            cvtile = cv.cvCreateMat(128, 128, cv.CV_8UC3)
            bwtile = cv.cvCreateMat(128, 128, cv.CV_8U)
            areas = [(pt[1].x - pt[0].x) * (pt[1].y - pt[0].y) for pt in face]
            startF = face[areas.index(max(areas))][0]
            endF = face[areas.index(max(areas))][1]
            facerect = self.cap.rect(startF.x, startF.y, endF.x - startF.x,
                                     endF.y - startF.y)

            if not facerect:
                return

            cv.cvResize(facerect, cvtile)

            cv.cvCvtColor(cvtile, bwtile, cv.CV_BGR2GRAY)

            leye, reye, lcp, rcp = self.fel.locateEyes(bwtile)
            leye = pv.Point(leye)
            reye = pv.Point(reye)

            leye_x = int((float(leye.X()) * facerect.width / cvtile.width) +
                         startF.x)
            leye_y = int((float(leye.Y()) * facerect.height / cvtile.height) +
                         startF.y)

            reye_x = int((float(reye.X()) * facerect.width / cvtile.width) +
                         startF.x)
            reye_y = int((float(reye.Y()) * facerect.height / cvtile.height) +
                         startF.y)

            eye_rect = {
                "startX": leye_x - 5,
                "startY": leye_y - 5,
                "endX": leye_x + 5,
                "endY": leye_y + 5
            }

            #self.cap.image(self.cap.rect(leye_x - 5, leye_y - 5, 20, 20))

            if not hasattr(self.cap, "leye"):
                self.cap.add(
                    Point("point",
                          "leye", [int(leye_x), int(leye_y)],
                          parent=self.cap,
                          follow=True))
            else:
                self.cap.add(
                    Point("point",
                          "reye", [int(reye_x), int(reye_y)],
                          parent=self.cap,
                          follow=True))

            # Shows the face rectangle
            #self.cap.add( Graphic("rect", "Face", ( startF.x, startF.y ), (endF.x, endF.y), parent=self.cap) )

        self.foreheadOrig = None

        return False
Esempio n. 22
0
def opencv_scale(filename, width, height):
    im = highgui.cvLoadImage(filename)
    newim = cv.cvCreateImage(cv.cvSize(width, height), 8, 3)
    cv.cvResize(im, newim, cv.CV_INTER_AREA)
    highgui.cvSaveImage("outcv.jpg", newim)
Esempio n. 23
0
def blob_identification(binary_image):
    from opencv.highgui import cvSaveImage, cvLoadImageM
    from opencv.cv import cvCreateImage, cvGetSize, cvCreateMat, cvSet, CV_RGB, cvResize
    from Blob import CBlob
    from BlobResult import CBlobResult
    from classification import classification
    from os import chdir, environ
    path = environ.get("HOME")
    frame_size = cvGetSize(binary_image)
    blo = cvCreateImage(frame_size, 8, 1)
    resblo = cvCreateMat(240, 320, binary_image.type)
    mask = cvCreateImage(frame_size, 8, 1)
    cvSet(mask, 255)
    myblobs = CBlobResult(binary_image, mask, 0, True)
    myblobs.filter_blobs(325, 2000)
    blob_count = myblobs.GetNumBlobs()
    count = 0
    pixr = []
    pixrm = []
    for i in range(blob_count):
        value = []
        rowval = []
        colval = []
        cvSet(blo, 0)
        my_enum_blob = myblobs.GetBlob(i)
        my_enum_blob.FillBlob(blo, CV_RGB(255, 0, 255), 0, 0)
        cvSet(resblo, 0)
        cvResize(blo, resblo, 1)
        for rowitem in range(resblo.rows):
            for colitem in range(resblo.cols):
                if resblo[rowitem, colitem] != 0:
                    rowval.append(rowitem)
                    colval.append(colitem)
                    value.append(resblo[rowitem, colitem])
        pixr.append(rowval[0])
        pixrm.append(rowval[-1])
        rowmin = min(rowval)
        rowedit = []
        for item in rowval:
            rowedit.append(item - rowmin)

        coledit = []
        colmin = min(colval)
        for item in colval:
            coledit.append(int(item) - colmin)

        rowmax = max(rowedit)
        colmax = max(colval) - colmin
        moved = cvCreateMat(rowmax + 10, colmax + 10, blo.type)
        cvSet(moved, 0)

        for i in range(len(rowval)):
            moved[int(rowedit[i]) + 5, int(coledit[i]) + 5] = int(value[i])
        chdir(path + "/alpr/latest/blobs")
        cvSaveImage("pic" + str(count) + ".png", moved)
        count += 1
    avoid = classification(pixr, pixrm)
    blob_image = cvCreateImage(frame_size, 8, 1)
    cvSet(blob_image, 0)
    for i in range(blob_count):
        if i not in avoid:
            my_enum_blob = myblobs.GetBlob(i)
            my_enum_blob.FillBlob(blob_image, CV_RGB(255, 0, 255), 0, 0)
            cvSaveImage("blob.jpg", blob_image)
    return
Esempio n. 24
0
	def timerEvent(self, ev):
		# Fetch a frame from the video camera
		frame									= highgui.cvQueryFrame(self.cap)
		img_orig								= cv.cvCreateImage(cv.cvSize(frame.width,frame.height),cv.IPL_DEPTH_8U, frame.nChannels)
		if (frame.origin == cv.IPL_ORIGIN_TL):
			cv.cvCopy(frame, img_orig)
		else:
			cv.cvFlip(frame, img_orig, 0)

		# Create a grey frame to clarify data
		img_grey								= cv.cvCreateImage(cv.cvSize(img_orig.width,img_orig.height), 8, 1)
		cv.cvCvtColor(img_orig, img_grey, cv.CV_BGR2GRAY)
		# Detect objects within the frame
		self.faces_storage						= cv.cvCreateMemStorage(0)
		faces									= self.detect_faces(img_grey)
		self.circles_storage					= cv.cvCreateMemStorage(0)
		circles									= self.detect_circles(img_grey)
		self.squares_storage					= cv.cvCreateMemStorage(0)
		squares									= self.detect_squares(img_grey, img_orig)
		self.lines_storage						= cv.cvCreateMemStorage(0)
		lines									= self.detect_lines(img_grey, img_orig)

		# Draw faces
		if faces:
			for face in faces:
				pt1, pt2						= self.face_points(face)
				cv.cvRectangle(img_orig, pt1, pt2, cv.CV_RGB(255,0,0), 3, 8, 0)

		# Draw lines
		if lines:
			for line in lines:
				cv.cvLine(img_orig, line[0], line[1], cv.CV_RGB(255,255,0), 3, 8)
		# Draw circles
		if circles:
			for circle in circles:
				cv.cvCircle(img_orig, cv.cvPoint(cv.cvRound(circle[0]),cv.cvRound(circle[1])),cv.cvRound(circle[2]),cv.CV_RGB(0,0,255),3,8,0)

		# Draw squares
		if squares:
			i									= 0
			while i<squares.total:
					pt							= []
					# read 4 vertices
					pt.append(squares[i])
					pt.append(squares[i+1])
					pt.append(squares[i+2])
					pt.append(squares[i+3])
					## draw the square as a closed polyline
					cv.cvPolyLine(img_orig, [pt], 1, cv.CV_RGB(0,255,0), 3, cv.CV_AA, 0)
					i							+= 4

		# Resize the image to display properly within the window
		#	CV_INTER_NN - nearest-neigbor interpolation, 
		#	CV_INTER_LINEAR - bilinear interpolation (used by default) 
		#	CV_INTER_AREA - resampling using pixel area relation. (preferred for image decimation)
		#	CV_INTER_CUBIC - bicubic interpolation.
		img_display								= cv.cvCreateImage(cv.cvSize(self.width(),self.height()), 8, 3)
		cv.cvResize(img_orig, img_display, cv.CV_INTER_NN)
		img_pil									= adaptors.Ipl2PIL(img_display)
		s										= StringIO()
		img_pil.save(s, "PNG")
		s.seek(0)
		q_img									= QImage()
		q_img.loadFromData(s.read())
		bitBlt(self, 0, 0, q_img)
Esempio n. 25
0
    highgui.cvSetMouseCallback("depthmatch - left", mousecb)
    highgui.cvCreateTrackbar("ROI", "depthmatch - left", variable_roi, size.width, cb_roi)
    highgui.cvCreateTrackbar("Buffer", "depthmatch - left", variable_buf, size.width, cb_buf)
    highgui.cvCreateTrackbar("Focal Length", "depthmatch - left", variable_focal, 1000, cb_focal)
    highgui.cvCreateTrackbar("Baseline/10", "depthmatch - left", variable_base, 1000, cb_base)
    leftdraw = cv.cvCreateImage(size, 8, 3)
    rightdraw = cv.cvCreateImage(size, 8, 3)
    while 1:
        depth = depthmatch(xmatch, ymatch, left, right, roi=variable_roi, buf=variable_buf,baseline=variable_base, focal_length=variable_focal)
        cv.cvCopy(left, leftdraw)
        cv.cvCopy(right, rightdraw)
        cv.cvLine(leftdraw, depth[1], depth[2], (0,255,0), 2)
        cv.cvPutText(leftdraw, "%2f(m) at (%2f,%2f)" % (depth[0][2],depth[0][0],depth[0][1]), (xmatch,ymatch), font, (0,0,255))
        cv.cvLine(rightdraw, depth[2], depth[2], (0,0,255), 5)
        highgui.cvShowImage("depthmatch - left", leftdraw)
        highgui.cvShowImage("depthmatch - right", rightdraw)
        print depth
        highgui.cvWaitKey(10)
        
        
if __name__ == "__main__" and test_number == 2:
    left = highgui.cvLoadImage(str(sys.argv[1]))
    right = highgui.cvLoadImage(str(sys.argv[2]))
    highgui.cvNamedWindow("Depth")
    depth = depthmatrix(left, right, 4)
    depth_full = cv.cvCreateImage(cv.cvGetSize(left), 8, 1)
    cv.cvResize(depth, depth_full)
    highgui.cvShowImage("Depth", depth_full)
    while 1:
        highgui.cvWaitKey(10)
Esempio n. 26
0
def opencv_scale(filename, width, height):
    im = highgui.cvLoadImage(filename)
    newim = cv.cvCreateImage(cv.cvSize(width, height), 8, 3)
    cv.cvResize(im, newim, cv.CV_INTER_AREA)
    highgui.cvSaveImage("outcv.jpg", newim)
Esempio n. 27
0
    def timerEvent(self, ev):
        # Fetch a frame from the video camera
        frame = highgui.cvQueryFrame(self.cap)
        img_orig = cv.cvCreateImage(cv.cvSize(frame.width, frame.height),
                                    cv.IPL_DEPTH_8U, frame.nChannels)
        if (frame.origin == cv.IPL_ORIGIN_TL):
            cv.cvCopy(frame, img_orig)
        else:
            cv.cvFlip(frame, img_orig, 0)

        # Create a grey frame to clarify data
        img_grey = cv.cvCreateImage(cv.cvSize(img_orig.width, img_orig.height),
                                    8, 1)
        cv.cvCvtColor(img_orig, img_grey, cv.CV_BGR2GRAY)
        # Detect objects within the frame
        self.faces_storage = cv.cvCreateMemStorage(0)
        faces = self.detect_faces(img_grey)
        self.circles_storage = cv.cvCreateMemStorage(0)
        circles = self.detect_circles(img_grey)
        self.squares_storage = cv.cvCreateMemStorage(0)
        squares = self.detect_squares(img_grey, img_orig)
        self.lines_storage = cv.cvCreateMemStorage(0)
        lines = self.detect_lines(img_grey, img_orig)

        # Draw faces
        if faces:
            for face in faces:
                pt1, pt2 = self.face_points(face)
                cv.cvRectangle(img_orig, pt1, pt2, cv.CV_RGB(255, 0, 0), 3, 8,
                               0)

        # Draw lines
        if lines:
            for line in lines:
                cv.cvLine(img_orig, line[0], line[1], cv.CV_RGB(255, 255, 0),
                          3, 8)
        # Draw circles
        if circles:
            for circle in circles:
                cv.cvCircle(
                    img_orig,
                    cv.cvPoint(cv.cvRound(circle[0]), cv.cvRound(circle[1])),
                    cv.cvRound(circle[2]), cv.CV_RGB(0, 0, 255), 3, 8, 0)

        # Draw squares
        if squares:
            i = 0
            while i < squares.total:
                pt = []
                # read 4 vertices
                pt.append(squares[i])
                pt.append(squares[i + 1])
                pt.append(squares[i + 2])
                pt.append(squares[i + 3])
                ## draw the square as a closed polyline
                cv.cvPolyLine(img_orig, [pt], 1, cv.CV_RGB(0, 255, 0), 3,
                              cv.CV_AA, 0)
                i += 4

        # Resize the image to display properly within the window
        #	CV_INTER_NN - nearest-neigbor interpolation,
        #	CV_INTER_LINEAR - bilinear interpolation (used by default)
        #	CV_INTER_AREA - resampling using pixel area relation. (preferred for image decimation)
        #	CV_INTER_CUBIC - bicubic interpolation.
        img_display = cv.cvCreateImage(cv.cvSize(self.width(), self.height()),
                                       8, 3)
        cv.cvResize(img_orig, img_display, cv.CV_INTER_NN)
        img_pil = adaptors.Ipl2PIL(img_display)
        s = StringIO()
        img_pil.save(s, "PNG")
        s.seek(0)
        q_img = QImage()
        q_img.loadFromData(s.read())
        bitBlt(self, 0, 0, q_img)
Esempio n. 28
0
def compute_saliency(image):
    global thresh
    global scale
    saliency_scale = int(math.pow(2,scale));
    bw_im1 = cv.cvCreateImage(cv.cvGetSize(image), cv.IPL_DEPTH_8U,1)
    cv.cvCvtColor(image, bw_im1, cv.CV_BGR2GRAY)
    bw_im = cv.cvCreateImage(cv.cvSize(saliency_scale,saliency_scale), cv.IPL_DEPTH_8U,1)
    cv.cvResize(bw_im1, bw_im)
    highgui.cvShowImage("BW", bw_im)
    realInput = cv.cvCreateImage( cv.cvGetSize(bw_im), cv.IPL_DEPTH_32F, 1);
    imaginaryInput = cv.cvCreateImage( cv.cvGetSize(bw_im), cv.IPL_DEPTH_32F, 1);
    complexInput = cv.cvCreateImage( cv.cvGetSize(bw_im), cv.IPL_DEPTH_32F, 2);

    cv.cvScale(bw_im, realInput, 1.0, 0.0);
    cv.cvZero(imaginaryInput);
    cv.cvMerge(realInput, imaginaryInput, None, None, complexInput);

    dft_M = saliency_scale #cv.cvGetOptimalDFTSize( bw_im.height - 1 );
    dft_N = saliency_scale #cv.cvGetOptimalDFTSize( bw_im.width - 1 );

    dft_A = cv.cvCreateMat( dft_M, dft_N, cv.CV_32FC2 );
    image_Re = cv.cvCreateImage( cv.cvSize(dft_N, dft_M), cv.IPL_DEPTH_32F, 1);
    image_Im = cv.cvCreateImage( cv.cvSize(dft_N, dft_M), cv.IPL_DEPTH_32F, 1);

    # copy A to dft_A and pad dft_A with zeros
    tmp = cv.cvGetSubRect( dft_A, cv.cvRect(0,0, bw_im.width, bw_im.height));
    cv.cvCopy( complexInput, tmp, None );
    if(dft_A.width > bw_im.width):
        tmp = cv.cvGetSubRect( dft_A, cv.cvRect(bw_im.width,0, dft_N - bw_im.width, bw_im.height));
        cv.cvZero( tmp );
    
    cv.cvDFT( dft_A, dft_A, cv.CV_DXT_FORWARD, complexInput.height );
    cv.cvSplit( dft_A, image_Re, image_Im, None, None );
    
    # Compute the phase angle 
    image_Mag = cv.cvCreateImage(cv.cvSize(dft_N, dft_M), cv.IPL_DEPTH_32F, 1);
    image_Phase = cv.cvCreateImage(cv.cvSize(dft_N, dft_M), cv.IPL_DEPTH_32F, 1);
    

    #compute the phase of the spectrum
    cv.cvCartToPolar(image_Re, image_Im, image_Mag, image_Phase, 0)

    log_mag = cv.cvCreateImage(cv.cvSize(dft_N, dft_M), cv.IPL_DEPTH_32F, 1);
    cv.cvLog(image_Mag, log_mag)
    #Box filter the magnitude, then take the difference
    image_Mag_Filt = cv.cvCreateImage(cv.cvSize(dft_N, dft_M), cv.IPL_DEPTH_32F, 1);
    filt = cv.cvCreateMat(3,3, cv.CV_32FC1);
    cv.cvSet(filt,cv.cvScalarAll(-1.0/9.0))
    cv.cvFilter2D(log_mag, image_Mag_Filt, filt, cv.cvPoint(-1,-1))

    cv.cvAdd(log_mag, image_Mag_Filt, log_mag, None)
    cv.cvExp(log_mag, log_mag)
    cv.cvPolarToCart(log_mag, image_Phase, image_Re, image_Im,0);

    cv.cvMerge(image_Re, image_Im, None, None, dft_A)
    cv.cvDFT( dft_A, dft_A, cv.CV_DXT_INVERSE, complexInput.height)
            
    tmp = cv.cvGetSubRect( dft_A, cv.cvRect(0,0, bw_im.width, bw_im.height));
    cv.cvCopy( tmp, complexInput, None );
    cv.cvSplit(complexInput, realInput, imaginaryInput, None, None)
    min, max = cv.cvMinMaxLoc(realInput);
    #cv.cvScale(realInput, realInput, 1.0/(max-min), 1.0*(-min)/(max-min));
    cv.cvSmooth(realInput, realInput);
    threshold = thresh/100.0*cv.cvAvg(realInput)[0]
    cv.cvThreshold(realInput, realInput, threshold, 1.0, cv.CV_THRESH_BINARY)
    tmp_img = cv.cvCreateImage(cv.cvGetSize(bw_im1),cv.IPL_DEPTH_32F, 1)
    cv.cvResize(realInput,tmp_img)
    cv.cvScale(tmp_img, bw_im1, 255,0)
    return bw_im1
Esempio n. 29
0
from opencv import highgui, cv
import math

mask = highgui.cvLoadImage(str(sys.argv[1]))


cap = highgui.cvCreateCameraCapture(1)
IMGW = 640
IMGH = 400
highgui.cvSetCaptureProperty(cap, highgui.CV_CAP_PROP_FRAME_WIDTH, IMGW)
highgui.cvSetCaptureProperty(cap, highgui.CV_CAP_PROP_FRAME_HEIGHT, IMGH)
tmp = highgui.cvQueryFrame(cap)
# resize mask
size = cv.cvGetSize(tmp)
mask_r = cv.cvCreateImage(size, 8, 3)
cv.cvResize(mask, mask_r)
mask_bw = cv.cvCreateImage(size, 8, 1)
cv.cvCvtColor(mask_r, mask_bw, cv.CV_RGB2GRAY)
total_pixels = size.width * size.height
sample_pixels = 0.0
for x in xrange(size.width):
    for y in xrange(size.height):
        if cv.cvGetReal2D(mask_bw, y, x) > 0:
            sample_pixels = sample_pixels + 1
print "Sample region: %f%%" % (100 * sample_pixels / total_pixels)
del (tmp)


h_bins = 20
h_limit = 180
s_bins = 32
Esempio n. 30
0
def blob_identification(binary_image):
	from opencv.highgui import cvSaveImage,cvLoadImageM
	from opencv.cv import cvCreateImage,cvGetSize,cvCreateMat,cvSet,CV_RGB,cvResize
	from Blob import CBlob
	from BlobResult import CBlobResult
	from classification import classification
        from os import chdir,environ
	path = environ.get("HOME")
	frame_size = cvGetSize (binary_image) 
	blo = cvCreateImage(frame_size, 8, 1)
	resblo=cvCreateMat(240,320,binary_image.type)	
	mask = cvCreateImage (frame_size, 8, 1)
	cvSet(mask, 255)
	myblobs = CBlobResult(binary_image, mask, 0, True)
	myblobs.filter_blobs(325,2000)
	blob_count = myblobs.GetNumBlobs()
	count=0
	pixr=[]
	pixrm=[]
	for i in range(blob_count):
		value=[]
		rowval=[]
		colval=[]
		cvSet(blo,0)
		my_enum_blob = myblobs.GetBlob(i)
		my_enum_blob.FillBlob(blo,CV_RGB(255,0,255),0,0)
		cvSet(resblo,0)
		cvResize(blo,resblo,1)
		for rowitem in range(resblo.rows):
		    for colitem in range(resblo.cols):
		       if resblo[rowitem,colitem]!=0:
		          rowval.append(rowitem)
		    	  colval.append(colitem)
		    	  value.append(resblo[rowitem,colitem])                      
		pixr.append(rowval[0])
		pixrm.append(rowval[-1])
		rowmin=min(rowval)
		rowedit=[]
		for item in rowval:
		    rowedit.append(item-rowmin)
	
		coledit=[]
		colmin=min(colval)
		for item in colval:
		    coledit.append(int(item)-colmin)
	
		rowmax=max(rowedit)
		colmax=max(colval)-colmin
		moved=cvCreateMat(rowmax+10,colmax+10,blo.type)
		cvSet(moved,0)
		
		for i in range(len(rowval)):
		    moved[int(rowedit[i])+5,int(coledit[i])+5]=int(value[i])
		chdir(path+"/alpr/latest/blobs")
		cvSaveImage("pic"+ str(count)+".png",moved)
                count+=1
	avoid=classification(pixr,pixrm)
	blob_image = cvCreateImage(frame_size, 8, 1)
	cvSet(blob_image,0)
	for i in range(blob_count):
		if i not in avoid:
			my_enum_blob = myblobs.GetBlob(i)
			my_enum_blob.FillBlob(blob_image,CV_RGB(255,0,255),0,0)
			cvSaveImage("blob.jpg",blob_image)
	return