Esempio n. 1
0
        def __init__(self):

            self.connection_options = ConnectionOptions()
            self.estimation_options = RequestOptions()

            self.data_set_path = ""
            self.weights = {}
            self.denominators = {}

            self.polling_interval = 600
Esempio n. 2
0
def _run_calculations(
    data_set: "PhysicalPropertyDataSet",
    force_field: "ForceField",
    polling_interval: int,
    request_options: "RequestOptions",
    server_config: EvaluatorServerConfig,
) -> "RequestResult":
    """Attempt to estimate the data set using the specified force field.

    Parameters
    ----------
    data_set
        The data set to estimate.
    force_field
        The force field to estimate the data set with.
    polling_interval
        The interval with which to attempt to retrieve the results.
    request_options
        The options to use when estimating the data set.
    server_config
        The configuration to use for the evaluator server.
    """
    from openff.evaluator.client import ConnectionOptions, EvaluatorClient

    calculation_backend = server_config.to_backend()

    with calculation_backend:

        evaluator_server = server_config.to_server(calculation_backend)

        with evaluator_server:

            # Request the estimates.
            client = EvaluatorClient(
                ConnectionOptions(server_port=server_config.port))

            request, error = client.request_estimate(
                property_set=data_set,
                force_field_source=force_field,
                options=request_options,
            )

            if error is not None:
                raise error

            # Wait for the results.
            results, error = request.results(True,
                                             polling_interval=polling_interval)

            if error is not None:
                raise error

    return results
def main():

    setup_timestamp_logging()

    # Load in the force field
    force_field_path = "smirnoff99Frosst-1.1.0.offxml"
    force_field_source = SmirnoffForceFieldSource.from_path(force_field_path)

    # Load in the data set containing the pure and binary properties.
    data_set = PhysicalPropertyDataSet.from_json("pure_data_set.json")
    data_set.merge(PhysicalPropertyDataSet.from_json("binary_data_set.json"))

    # Set up a server object to run the calculations using.
    server = setup_server(backend_type=BackendType.LocalGPU,
                          max_number_of_workers=1,
                          port=8001)

    with server:

        # Request the estimates.
        property_estimator = EvaluatorClient(
            ConnectionOptions(server_port=8001))

        for calculation_layer in ["SimulationLayer", "ReweightingLayer"]:

            options = RequestOptions()
            options.calculation_layers = [calculation_layer]

            parameter_gradient_keys = [
                ParameterGradientKey(tag="vdW",
                                     smirks="[#6X4:1]",
                                     attribute="epsilon"),
                ParameterGradientKey(tag="vdW",
                                     smirks="[#6X4:1]",
                                     attribute="rmin_half"),
            ]

            request, _ = property_estimator.request_estimate(
                property_set=data_set,
                force_field_source=force_field_source,
                options=options,
                parameter_gradient_keys=parameter_gradient_keys,
            )

            # Wait for the results.
            results, _ = request.results(True, 5)

            layer_name = re.sub(r"(?<!^)(?=[A-Z])", "_",
                                calculation_layer).lower()
            results.json(f"pure_binary_{layer_name}.json", True)
Esempio n. 4
0
        def from_json(cls, json_source):
            """Creates this class from a JSON string.

            Parameters
            -------
            json_source: str or file-like object
                The JSON representation of this class.
            """

            if isinstance(json_source, str):
                with open(json_source, "r") as file:
                    dictionary = json.load(file, cls=TypedJSONDecoder)
            else:
                dictionary = json.load(json_source, cls=TypedJSONDecoder)

            if "polling_interval" not in dictionary:
                dictionary["polling_interval"] = 600

            assert (
                "connection_options" in dictionary
                and "estimation_options" in dictionary
                and "data_set_path" in dictionary
                and "weights" in dictionary
                and "denominators" in dictionary
                and "polling_interval" in dictionary
            )

            value = cls()

            value.connection_options = ConnectionOptions()
            value.connection_options.__setstate__(dictionary["connection_options"])

            value.estimation_options = RequestOptions()
            value.estimation_options.__setstate__(dictionary["estimation_options"])

            value.data_set_path = dictionary["data_set_path"]

            value.weights = {
                property_name: dictionary["weights"][property_name]
                for property_name in dictionary["weights"]
            }
            value.denominators = {
                property_name: dictionary["denominators"][property_name]
                for property_name in dictionary["denominators"]
            }

            value.polling_interval = dictionary["polling_interval"]

            return value
Esempio n. 5
0
def main():

    setup_timestamp_logging()

    # Load in the force field
    force_field_path = "smirnoff99Frosst-1.1.0.offxml"
    force_field_source = SmirnoffForceFieldSource.from_path(force_field_path)

    # Create a data set containing three solvation free energies.
    data_set = PhysicalPropertyDataSet.from_json("hydration_data_set.json")
    data_set.json("hydration_data_set.json", format=True)

    # Set up a server object to run the calculations using.
    server = setup_server(backend_type=BackendType.LocalGPU,
                          max_number_of_workers=1,
                          port=8002)

    with server:

        # Request the estimates.
        property_estimator = EvaluatorClient(
            ConnectionOptions(server_port=8002))

        options = RequestOptions()
        options.calculation_layers = ["SimulationLayer"]
        options.add_schema("SimulationLayer", "SolvationFreeEnergy",
                           _get_fixed_lambda_schema())

        request, _ = property_estimator.request_estimate(
            property_set=data_set,
            force_field_source=force_field_source,
            options=options,
        )

        # Wait for the results.
        results, _ = request.results(True, 60)

        # Save the result to file.
        results.json("results.json", True)
Esempio n. 6
0
    class OptionsFile:
        """Represents the set of options that a `Evaluator_SMIRNOFF`
        target will be run with.

        Attributes
        ----------
        connection_options: openff.evaluator.client.ConnectionOptions
            The options for how the `evaluator` client should
            connect to a running server instance.
        estimation_options: openff.evaluator.client.RequestOptions
            The options for how properties should be estimated by the
            `evaluator` (e.g. the uncertainties to which properties
            should be estimated).
        data_set_path: str
            The path to a JSON serialized PhysicalPropertyDataSet which
            contains those physical properties which will be optimised
            against.
        weights: dict of float
            The weighting of each property which will be optimised against.
        denominators: dict of str and unit.Quantity
            The denominators will be used to remove units from the properties
            and scale their values.
        polling_interval: float
            The time interval with which to check whether the evaluator has
            finished fulfilling the request (in seconds).
        """

        def __init__(self):

            self.connection_options = ConnectionOptions()
            self.estimation_options = RequestOptions()

            self.data_set_path = ""
            self.weights = {}
            self.denominators = {}

            self.polling_interval = 600

        def to_json(self):
            """Converts this class into a JSON string.

            Returns
            -------
            str
                The JSON representation of this class.
            """

            value = {
                "connection_options": self.connection_options.__getstate__(),
                "estimation_options": self.estimation_options.__getstate__(),
                "data_set_path": self.data_set_path,
                "weights": {
                    property_name: self.weights[property_name]
                    for property_name in self.weights
                },
                "denominators": {
                    property_name: self.denominators[property_name]
                    for property_name in self.denominators
                },
                "polling_interval": self.polling_interval
            }

            return json.dumps(
                value,
                sort_keys=True,
                indent=4,
                separators=(",", ": "),
                cls=TypedJSONEncoder,
            )

        @classmethod
        def from_json(cls, json_source):
            """Creates this class from a JSON string.

            Parameters
            -------
            json_source: str or file-like object
                The JSON representation of this class.
            """

            if isinstance(json_source, str):
                with open(json_source, "r") as file:
                    dictionary = json.load(file, cls=TypedJSONDecoder)
            else:
                dictionary = json.load(json_source, cls=TypedJSONDecoder)

            if "polling_interval" not in dictionary:
                dictionary["polling_interval"] = 600

            assert (
                "connection_options" in dictionary
                and "estimation_options" in dictionary
                and "data_set_path" in dictionary
                and "weights" in dictionary
                and "denominators" in dictionary
                and "polling_interval" in dictionary
            )

            value = cls()

            value.connection_options = ConnectionOptions()
            value.connection_options.__setstate__(dictionary["connection_options"])

            value.estimation_options = RequestOptions()
            value.estimation_options.__setstate__(dictionary["estimation_options"])

            value.data_set_path = dictionary["data_set_path"]

            value.weights = {
                property_name: dictionary["weights"][property_name]
                for property_name in dictionary["weights"]
            }
            value.denominators = {
                property_name: dictionary["denominators"][property_name]
                for property_name in dictionary["denominators"]
            }

            value.polling_interval = dictionary["polling_interval"]

            return value