Esempio n. 1
0
def _decile_net(nivvie_net, champm, wprm):
    '''
    Décile de niveau de vie net
    'men'
    '''
    labels = arange(1, 11)
    method = 2
    decile, values = mark_weighted_percentiles(nivvie_net, labels, wprm * champm, method, return_quantiles = True)
    return decile * champm
Esempio n. 2
0
def _pauvre60(nivvie, champm, wprm):
    '''
    Indicatrice de pauvreté à 60% du niveau de vie median
    'men'
    '''
    labels = arange(1, 3)
    method = 2
    percentile, values = mark_weighted_percentiles(nivvie, labels, wprm * champm, method, return_quantiles = True)
    threshold = .6 * values[1]
    return (nivvie <= threshold) * champm
Esempio n. 3
0
def _decile_net(nivvie_net, champm, wprm):
    '''
    Décile de niveau de vie net
    'men'
    '''
    labels = arange(1, 11)
    method = 2
    decile, values = mark_weighted_percentiles(nivvie_net,
                                               labels,
                                               wprm * champm,
                                               method,
                                               return_quantiles=True)
    return decile * champm
Esempio n. 4
0
def _pauvre60(nivvie, champm, wprm):
    '''
    Indicatrice de pauvreté à 60% du niveau de vie median
    'men'
    '''
    labels = arange(1, 3)
    method = 2
    percentile, values = mark_weighted_percentiles(nivvie,
                                                   labels,
                                                   wprm * champm,
                                                   method,
                                                   return_quantiles=True)
    threshold = .6 * values[1]
    return (nivvie <= threshold) * champm
Esempio n. 5
0
def _decile(nivvie, champm, wprm):
    '''
    Décile de niveau de vie disponible
    'men'
    '''
    labels = arange(1, 11)
    method = 2
    decile, values = mark_weighted_percentiles(nivvie, labels, wprm * champm, method, return_quantiles = True)
#    print values
#    print len(values)
#    print (nivvie*champm).min()
#    print (nivvie*champm).max()
#    print decile.min()
#    print decile.max()
#    print (nivvie*(decile==1)*champm*wprm).sum()/( ((decile==1)*champm*wprm).sum() )
    del values
    return decile * champm
Esempio n. 6
0
def _decile(nivvie, champm, wprm):
    '''
    Décile de niveau de vie disponible
    'men'
    '''
    labels = arange(1, 11)
    method = 2
    decile, values = mark_weighted_percentiles(nivvie,
                                               labels,
                                               wprm * champm,
                                               method,
                                               return_quantiles=True)
    #    print values
    #    print len(values)
    #    print (nivvie*champm).min()
    #    print (nivvie*champm).max()
    #    print decile.min()
    #    print decile.max()
    #    print (nivvie*(decile==1)*champm*wprm).sum()/( ((decile==1)*champm*wprm).sum() )
    del values
    return decile * champm
Esempio n. 7
0
    def compute(self):
        """
        Compute inequality dataframe
        """
        output = self.simulation.output_table
        final_df = None

        WEIGHT = model.WEIGHT
        FILTERING_VARS = model.FILTERING_VARS
        for varname, entities in self.vars.iteritems():
            for entity in entities:
                #idx =  output.index[entity]

                val = output.get_value(varname, entity)
                weights = output._inputs.get_value(WEIGHT, entity)
                filter_var_name = FILTERING_VARS[0]
                filter_var = output._inputs.get_value(filter_var_name, entity)

            items = []
            # Compute mean
            moy = (weights * filter_var * val).sum() / (weights *
                                                        filter_var).sum()
            items.append(("Moyenne", [moy]))

            # Compute deciles
            labels = range(1, 11)
            method = 2
            decile, values = mark_weighted_percentiles(val,
                                                       labels,
                                                       weights * filter_var,
                                                       method,
                                                       return_quantiles=True)

            labels = ['D' + str(d) for d in range(1, 11)]
            del decile
            for l, v in zip(labels[:-1], values[1:-1]):
                items.append((l, [v]))

            # Compute Gini
            gini_coeff = gini(val, weights * filter_var)
            items.append((_("Gini index"), [gini_coeff]))

            df = DataFrame.from_items(items, orient='index', columns=[varname])
            df = df.reset_index()
            if final_df is None:
                final_df = df
            else:
                final_df = final_df.merge(df, on='index')

        final_df[u"Initial à net"] = (
            final_df['nivvie_net'] -
            final_df['nivvie_ini']) / final_df['nivvie_ini']
        final_df[u"Net à disponible"] = (
            final_df['nivvie'] -
            final_df['nivvie_net']) / final_df['nivvie_net']
        final_df = final_df[[
            'index', 'nivvie_ini', u"Initial à net", 'nivvie_net',
            u"Net à disponible", 'nivvie'
        ]]
        self.inequality_dataframe = final_df

        # poverty
        poverty = dict()
        entity = "men"
        varname = "nivvie"
        for percentage in [40, 50, 60]:
            #            idx =  output.index[entity]
            varname = "pauvre" + str(percentage)
            val = output.get_value(varname, entity)
            weights = output._inputs.get_value(WEIGHT, entity)
            filter_var_name = FILTERING_VARS[0]
            filter_var = output._inputs.get_value(filter_var_name, entity)
            poverty[percentage] = (weights * filter_var *
                                   val).sum() / (weights * filter_var).sum()

        self.poverty = poverty
Esempio n. 8
0

year = 2009
erf = ErfsDataTable(year=year)
#erf.set_config()
vars = [ "zrstm", "zchom", "pfamm", "wprm", "pauvre50m", "pauvre60m", "nivviem", "champm"]
df = erf.get_values(variables=vars, table="erf_menage" )


labels = arange(1,11)
method = 2

nivvie = df["nivviem"].astype("float64").values

wprm = df["wprm"].astype("float64").values
decil, values = mark_weighted_percentiles(nivvie, labels, wprm, method, return_quantiles = True)


df2 = DataFrame({"decile" : decil})
df["decile"] = df2["decile"]



indexes = { "zrstm" : .01, "zchom": .01, "pfamm" : .01} # TODO change 1%
results = DataFrame(index =indexes.keys(), columns = ["total", "pauvre50", "pauvre60"] + ["decile>"+str(decile) for decile in range(0,10)] )

for var, index in indexes.iteritems():
    total = df[var]*index*df["wprm"]*df["champm"]
    pauvre50 = df[var]*index*df["wprm"]*(df["pauvre50m"]<=0)*df["champm"]
    pauvre60 = df[var]*index*df["wprm"]*(df["pauvre60m"]<=0)*df["champm"]
    results.set_value(var, "total", total.sum()/1e6)
Esempio n. 9
0
    def compute(self):
        """
        Compute inequality dataframe
        """
        output = self.simulation.output_table
        final_df = None

        WEIGHT = model.WEIGHT
        FILTERING_VARS = model.FILTERING_VARS
        for varname, entities in self.vars.iteritems():
            for entity in entities:
                #idx =  output.index[entity]

                val  = output.get_value(varname, entity)
                weights = output._inputs.get_value(WEIGHT, entity)
                filter_var_name = FILTERING_VARS[0]
                filter_var= output._inputs.get_value(filter_var_name, entity)

            items = []
            # Compute mean
            moy = (weights*filter_var*val).sum()/(weights*filter_var).sum()
            items.append( ("Moyenne",  [moy]))

            # Compute deciles
            labels = range(1,11)
            method = 2
            decile, values = mark_weighted_percentiles(val, labels, weights*filter_var, method, return_quantiles=True)

            labels = [ 'D'+str(d) for d in range(1,11)]
            del decile
            for l, v in zip(labels[:-1],values[1:-1]):
                items.append( (l, [v]))

            # Compute Gini
            gini_coeff = gini(val, weights*filter_var)
            items.append( ( _("Gini index"), [gini_coeff]))

            df = DataFrame.from_items(items, orient = 'index', columns = [varname])
            df = df.reset_index()
            if final_df is None:
                final_df = df
            else:
                final_df = final_df.merge(df, on='index')

        final_df[u"Initial à net"] = (final_df['nivvie_net']-final_df['nivvie_ini'])/final_df['nivvie_ini']
        final_df[u"Net à disponible"] = (final_df['nivvie']-final_df['nivvie_net'])/final_df['nivvie_net']
        final_df = final_df[['index','nivvie_ini', u"Initial à net", 'nivvie_net',u"Net à disponible",'nivvie']]
        self.inequality_dataframe = final_df

        # poverty
        poverty = dict()
        entity = "men"
        varname = "nivvie"
        for percentage in [ 40, 50, 60]:
#            idx =  output.index[entity]
            varname = "pauvre" + str(percentage)
            val = output.get_value(varname, entity)
            weights = output._inputs.get_value(WEIGHT, entity)
            filter_var_name = FILTERING_VARS[0]
            filter_var= output._inputs.get_value(filter_var_name, entity)
            poverty[percentage] =  (weights*filter_var*val).sum()/(weights*filter_var).sum()

        self.poverty = poverty