Esempio n. 1
0
 def __init__(self, root=None, driver=None, impl=None):
     super(Problem, self).__init__()
     self.root = root
     if impl is None:
         self._impl = BasicImpl
     else:
         self._impl = impl
     if driver is None:
         self.driver = Driver()
     else:
         self.driver = driver
Esempio n. 2
0
class Problem(System):
    """ The Problem is always the top object for running an OpenMDAO
    model.
    """

    def __init__(self, root=None, driver=None, impl=None):
        super(Problem, self).__init__()
        self.root = root
        if impl is None:
            self._impl = BasicImpl
        else:
            self._impl = impl
        if driver is None:
            self.driver = Driver()
        else:
            self.driver = driver

    def __getitem__(self, name):
        """Retrieve unflattened value of named unknown or unconnected
        param variable from the root system.

        Args
        ----
        name : str
             The name of the variable.

        Returns
        -------
        The unflattened value of the given variable.
        """
        return self.root[name]

    def __setitem__(self, name, val):
        """Sets the given value into the appropriate `VecWrapper`.
        'name' is assumed to be a promoted name.

        Args
        ----
        name : str
             The promoted name of the variable to set into the
             unknowns vector, or into params vectors if the params are
             unconnected.
        """
        if name in self.root.unknowns:
            self.root.unknowns[name] = val
        elif name in self._dangling:
            for p in self._dangling[name]:
                parts = p.rsplit('.', 1)
                if len(parts) == 1:
                    self.root.params[p] = val
                else:
                    grp = self.root._subsystem(parts[0])
                    grp.params[parts[1]] = val
        else:
            raise KeyError("Variable '%s' not found." % name)

    def _setup_connections(self, params_dict, unknowns_dict):
        """Generate a mapping of absolute param pathname to the pathname
        of its unknown.
        """
        # Get all explicit connections (stated with absolute pathnames)
        connections = self.root._get_explicit_connections()

        # go through promoted names of all top level params/unknowns
        # if promoted name in unknowns matches promoted name in params
        # that indicates an implicit connection. All connections are returned
        # in absolute form.
        implicit_conns, prom_noconns = _get_implicit_connections(params_dict, unknowns_dict)

        # combine implicit and explicit connections
        for tgt, srcs in implicit_conns.items():
            connections.setdefault(tgt, []).extend(srcs)

        # resolve any input to input explicit connections
        input_sets = {}
        for tgt, srcs in connections.items():
            for src in srcs:
                if src in params_dict:
                    input_sets.setdefault(src, set()).update((tgt,src))
                    input_sets.setdefault(tgt, set()).update((tgt,src))

        # find any promoted but not connected inputs
        for p, meta in params_dict.items():
            prom = meta['promoted_name']
            if prom in prom_noconns:
                input_sets.setdefault(meta['pathname'], set()).update(prom_noconns[prom])

        for tgt, srcs in list(connections.items()):
            if tgt in input_sets:
                for s in srcs:
                    if s in unknowns_dict:
                        for t in input_sets[tgt]:
                            if s not in connections.get(t,()):
                                connections.setdefault(t, []).append(s)

        newconns = {}
        for tgt, srcs in connections.items():
            unknown_srcs = [s for s in srcs if s in unknowns_dict]
            if len(unknown_srcs) > 1:
                raise RuntimeError("Target '%s' is connected to multiple unknowns: %s" %
                                   (tgt, unknown_srcs))

            if unknown_srcs:
                newconns[tgt] = unknown_srcs[0]

        connections = newconns

        self._dangling = {}
        prom_unknowns = { m['promoted_name'] for m in unknowns_dict.values() }
        for p, meta in params_dict.items():
            if meta['pathname'] not in connections:
                if meta['promoted_name'] not in prom_unknowns and meta['pathname'] in input_sets:
                    self._dangling[meta['promoted_name']] = input_sets[meta['pathname']]
                else:
                    self._dangling[meta['promoted_name']] = set([meta['pathname']])


        # perform additional checks on connections (e.g. for compatible types and shapes)
        check_connections(connections, params_dict, unknowns_dict)

        return connections

    def setup(self, check=True, out_stream=sys.stdout):
        """Performs all setup of vector storage, data transfer, etc.,
        necessary to perform calculations.

        Args
        ----
        check : bool, optional
            Check for potential issues after setup is complete (the default
            is True)

        out_stream : a file-like object, optional
            Stream where report will be written if check is performed.
        """
        # if we modify the system tree, we'll need to call _setup_variables
        # and _setup_connections again
        tree_changed = False

        # call _setup_variables again if we change metadata
        meta_changed = False

        # Give every system an absolute pathname
        self.root._setup_paths(self.pathname)

        # Returns the parameters and unknowns metadata dictionaries
        # for the root, which has an entry for each variable contained
        # in any child of root. Metadata for each variable will contain
        # the name of the variable relative to that system, the absolute
        # name of the variable, any user defined metadata, and the value,
        # size and/or shape if known. For example:
        #  unknowns_dict['G1.G2.foo.v1'] = {
        #     'promoted_name' :  'v1',
        #     'pathname' : 'G1.G2.foo.v1', # absolute path from the top
        #     'size' : 1,
        #     'shape' : 1,
        #     'val': 2.5,   # the initial value of that variable (if known)
        #  }
        params_dict, unknowns_dict = self.root._setup_variables()

        # collect all connections, both implicit and explicit from
        # anywhere in the tree, and put them in a dict where each key
        # is an absolute param name that maps to the absolute name of
        # a single source.
        connections = self._setup_connections(params_dict, unknowns_dict)

        # TODO: handle any automatic grouping of systems here...

        # divide MPI communicators among subsystems
        if MPI:
            self.root._setup_communicators(MPI.COMM_WORLD)
        else:
            self.root._setup_communicators(FakeComm())

        # mark any variables in non-local Systems as 'remote'
        for comp in self.root.components(recurse=True):
            if not comp.is_active():
                meta_changed = True
                comp._set_vars_as_remote()

        # All changes to the system tree or variable metadata
        # must be complete at this point.

        if tree_changed:
            self.root._setup_paths(self.pathname)
            params_dict, unknowns_dict = self.root._setup_variables()
            connections = self._setup_connections(params_dict, unknowns_dict)
        elif meta_changed:
            params_dict, unknowns_dict = self.root._setup_variables()

        # calculate unit conversions and store in param metadata
        self._setup_units(connections, params_dict, unknowns_dict)

        # propagate top level promoted names, unit conversions,
        # and connections down to all subsystems
        for sub in self.root.subsystems(recurse=True, include_self=True):
            sub.connections = connections

            for meta in chain(sub._params_dict.values(),
                              sub._unknowns_dict.values()):
                path = meta['pathname']
                if path in unknowns_dict:
                    meta['top_promoted_name'] = unknowns_dict[path]['promoted_name']
                else:
                    meta['top_promoted_name'] = params_dict[path]['promoted_name']
                    unit_conv = params_dict[path].get('unit_conv')
                    if unit_conv:
                        meta['unit_conv'] = unit_conv

        # Given connection information, create mapping from system pathname
        # to the parameters that system must transfer data to
        param_owners = _assign_parameters(connections)

        # get map of vars to VOI indices
        self._poi_indices, self._qoi_indices = self.driver._map_voi_indices()

        pois = self.driver.params_of_interest()
        oois = self.driver.outputs_of_interest()
        mode = self._check_for_matrix_matrix(pois, oois)

        relevance = Relevance(params_dict, unknowns_dict, connections,
                              pois, oois, mode)

        # create VecWrappers for all systems in the tree.
        self.root._setup_vectors(param_owners, relevance=relevance,
                                 impl=self._impl)

        # Prep for case recording
        self._start_recorders()

        # Prepare Driver
        self.driver._setup(self.root)

        # check for any potential issues
        if check:
            self._check_setup(out_stream)

    def _check_dangling_params(self, out_stream=sys.stdout):
        # check for parameters that are not connected to a source/unknown.
        # this includes ALL dangling params, both promoted and unpromoted.
        dangling_params = [p for p in self.root._params_dict
                              if p not in self.root.connections]
        if dangling_params:
            print("\nThe following parameters have no associated unknowns:",
                  file=out_stream)
            for d in sorted(dangling_params):
                print(d, file=out_stream)

    def _check_mode(self, out_stream=sys.stdout):
        # Adjoint vs Forward mode appropriateness
        if self._calculated_mode != self.root._relevance.mode:
            print("\nSpecified derivative mode is '%s', but calculated mode is '%s'\n(based "
                  "on param size of %d and unknown size of %d)" % (self.root._relevance.mode,
                                                                   self._calculated_mode,
                                                                   self._p_length,
                                                                   self._u_length),
                  file=out_stream)

    def _list_unit_conversions(self, out_stream=sys.stdout):
        # list all unit conversions being made (including only units on one side)
        if self._unit_diffs:
            print("\nUnit Conversions")
            for (src,tgt), (sunit,tunit) in sorted(self._unit_diffs.items()):
                print("%s -> %s : %s -> %s" % (src, tgt, sunit, tunit), file=out_stream)

    def _check_no_unknown_comps(self, out_stream=sys.stdout):
        # Components without unknowns
        nocomps = sorted([c.pathname for c in self.root.components(recurse=True, local=True)
                     if len(c.unknowns) == 0])
        if nocomps:
            print("\nThe following components have no unknowns:", file=out_stream)
            for n in nocomps:
                print(n, file=out_stream)

    def _check_no_recorders(self, out_stream=sys.stdout):
        # No case recorder
        if not self.driver.recorders:
            for grp in self.root.subgroups(recurse=True, local=True, include_self=True):
                if grp.nl_solver.recorders or grp.ln_solver.recorders:
                    break
            else:
                print("\nNo recorders have been specified, so no data will be saved.",
                      file=out_stream)

    def _check_no_connect_comps(self, out_stream=sys.stdout):
        # Unconnected components
        conn_comps = set([t.rsplit('.',1)[0] for t in self.root.connections.keys()])
        conn_comps.update([s.rsplit('.',1)[0] for s in self.root.connections.values()])
        noconn_comps = sorted([c.pathname for c in self.root.components(recurse=True, local=True)
                          if c.pathname not in conn_comps])
        if noconn_comps:
            print("\nThe following components have no connections:", file=out_stream)
            for comp in noconn_comps:
                print(comp, file=out_stream)

    def _check_mpi(self, out_stream=sys.stdout):
        if under_mpirun():
            # Indicate that there are no parallel systems if user is running under MPI
            if MPI.COMM_WORLD.rank == 0:
                for grp in self.root.subgroups(recurse=True, include_self=True):
                    if isinstance(grp, ParallelGroup):
                        break
                else:
                    print("\nRunning under MPI, but no ParallelGroups were found.",
                          file=out_stream)

                mincpu, maxcpu = self.root.get_req_procs()
                if maxcpu is not None and MPI.COMM_WORLD.size > maxcpu:
                    print("\nmpirun was given %d MPI processes, but the problem can only use %d" %
                          (MPI.COMM_WORLD.size, maxcpu))
        # or any ParalleGroups found when not running under MPI
        else:
            for grp in self.root.subgroups(recurse=True, include_self=True):
                if isinstance(grp, ParallelGroup):
                    print("\nFound ParallelGroup '%s', but not running under MPI." %
                          grp.pathname, file=out_stream)

    def _check_graph(self, out_stream=sys.stdout):
        # Cycles in group w/o solver
        cgraph = self.root._relevance._cgraph
        for grp in self.root.subgroups(recurse=True, include_self=True):
            path = [] if not grp.pathname else grp.pathname.split('.')
            graph = cgraph.subgraph([n for n in cgraph if n.startswith(grp.pathname)])
            renames = {}
            for node in graph.nodes_iter():
                renames[node] = '.'.join(node.split('.')[:len(path)+1])
                if renames[node] == node:
                    del renames[node]

            # get the graph of direct children of current group
            nx.relabel_nodes(graph, renames, copy=False)

            # remove self loops created by renaming
            graph.remove_edges_from([(u,v) for u,v in graph.edges()
                                         if u==v])

            strong = [s for s in nx.strongly_connected_components(graph)
                        if len(s)>1]

            if strong and isinstance(grp.nl_solver, RunOnce): # no solver, cycles BAD
                relstrong = []
                for slist in strong:
                    relstrong.append([])
                    for s in slist:
                        relstrong[-1].append(name_relative_to(grp.pathname, s))
                        relstrong[-1] = sorted(relstrong[-1])
                print("Group '%s' has the following cycles: %s" %
                     (grp.pathname, relstrong), file=out_stream)

            # Components/Systems/Groups are not in the right execution order
            subnames = [s.pathname for s in grp.subsystems()]
            while strong:
                # break cycles to check order
                lsys = [s for s in subnames if s in strong[0]]
                for p in graph.predecessors(lsys[0]):
                    if p in lsys:
                        graph.remove_edge(p, lsys[0])
                strong = [s for s in nx.strongly_connected_components(graph)
                            if len(s)>1]

            visited = set()
            out_of_order = set()
            for sub in grp.subsystems():
                visited.add(sub.pathname)
                for u,v in nx.dfs_edges(graph, sub.pathname):
                    if v in visited:
                        out_of_order.add(v)

            if out_of_order:
                print("In group '%s', the following subsystems are out-of-order: %s" %
                      (grp.pathname, sorted([name_relative_to(grp.pathname, n)
                                                for n in out_of_order])), file=out_stream)

    def _check_setup(self, out_stream=sys.stdout):
        """Write a report to the given stream indicating any potential problems found
        with the current configuration.

        Args
        ----
        out_stream : a file-like object, optional
            Stream where report will be written.
        """
        self._check_dangling_params(out_stream)
        self._check_mode(out_stream)
        self._list_unit_conversions(out_stream)
        self._check_no_unknown_comps(out_stream)
        self._check_no_connect_comps(out_stream)
        self._check_no_recorders(out_stream)
        self._check_mpi(out_stream)
        self._check_graph(out_stream)

        # TODO: Incomplete optimization driver configuration
        # TODO: Parallelizability for users running serial models
        # TODO: io state of recorder-specific files?

        # loop over subsystems and let them add any specific checks to the stream
        for s in self.root.subsystems(recurse=True, local=True, include_self=True):
            stream = cStringIO()
            s._check_setup(out_stream=stream)
            content = stream.getvalue()
            if content:
                print("%s:\n%s\n" % (s.pathname, content), file=out_stream)

    def run(self):
        """ Runs the Driver in self.driver. """
        if self.root.is_active():
            self.driver.run(self)

    def _mode(self, mode, param_list, unknown_list):
        """ Determine the mode based on precedence. The mode in `mode` is
        first. If that is 'auto', then the mode in root.ln_options takes
        precedence. If that is 'auto', then mode is determined by the width
        of the parameter and quantity space."""

        self._p_length = 0
        self._u_length = 0
        uset = set()
        for unames in unknown_list:
            if isinstance(unames, tuple):
                uset.update(unames)
            else:
                uset.add(unames)
        pset = set()
        for pnames in param_list:
            if isinstance(pnames, tuple):
                pset.update(pnames)
            else:
                pset.add(pnames)

        for meta in chain(self.root._unknowns_dict.values(),
                          self.root._params_dict.values()):
            prom_name = meta['promoted_name']
            if prom_name in uset:
                self._u_length += meta['size']
                uset.remove(prom_name)
            elif prom_name in pset:
                self._p_length += meta['size']
                pset.remove(prom_name)

        if uset:
            raise RuntimeError("Can't determine size of unknowns %s." % list(uset))
        if pset:
            raise RuntimeError("Can't determine size of params %s." % list(pset))

        # Choose mode based on size
        if self._p_length > self._u_length:
            self._calculated_mode = 'rev'
        else:
            self._calculated_mode = 'fwd'

        if mode == 'auto':
            mode = self.root.ln_solver.options['mode']
            if mode == 'auto':
                mode = self._calculated_mode

        return mode

    def calc_gradient(self, param_list, unknown_list, mode='auto',
                      return_format='array'):
        """ Returns the gradient for the system that is slotted in
        self.root. This function is used by the optimizer but also can be
        used for testing derivatives on your model.

        Args
        ----
        param_list : list of strings, optional
            List of parameter name strings with respect to which derivatives
            are desired. All params must have a paramcomp.

        unknown_list : list of strings, optional
            List of output or state name strings for derivatives to be
            calculated. All must be valid unknowns in OpenMDAO.

        mode : string, optional
            Deriviative direction, can be 'fwd', 'rev', 'fd', or 'auto'.
            Default is 'auto', which uses mode specified on the linear solver
            in root.

        return_format : string, optional
            Format for the derivatives, can be 'array' or 'dict'.

        Returns
        -------
        ndarray or dict
            Jacobian of unknowns with respect to params.
        """

        if mode not in ['auto', 'fwd', 'rev', 'fd']:
            msg = "mode must be 'auto', 'fwd', 'rev', or 'fd'"
            raise ValueError(msg)

        if return_format not in ['array', 'dict']:
            msg = "return_format must be 'array' or 'dict'"
            raise ValueError(msg)

        # Either analytic or finite difference
        if mode == 'fd' or self.root.fd_options['force_fd'] == True:
            return self._calc_gradient_fd(param_list, unknown_list,
                                          return_format)
        else:
            return self._calc_gradient_ln_solver(param_list, unknown_list,
                                                 return_format, mode)

    def _calc_gradient_fd(self, param_list, unknown_list, return_format):
        """ Returns the finite differenced gradient for the system that is slotted in
        self.root.

        Args
        ----
        param_list : list of strings, optional
            List of parameter name strings with respect to which derivatives
            are desired. All params must have a paramcomp.

        unknown_list : list of strings, optional
            List of output or state name strings for derivatives to be
            calculated. All must be valid unknowns in OpenMDAO.

        return_format : string, optional
            Format for the derivatives, can be 'array' or 'dict'.

        Returns
        -------
        ndarray or dict
            Jacobian of unknowns with respect to params.
        """
        root     = self.root
        unknowns = root.unknowns
        params   = root.params

        Jfd = root.fd_jacobian(params, unknowns, root.resids, total_derivs=True)

        def get_fd_ikey(ikey):
            # FD Input keys are a little funny....
            if isinstance(ikey, tuple):
                ikey = ikey[0]

            fd_ikey = ikey

            if fd_ikey not in params:
                # The user sometimes specifies the parameter output
                # name instead of its target because it is more
                # convenient
                for key, val in iteritems(root.connections):
                    if val == ikey:
                        fd_ikey = key
                        break

                # We need the absolute name, but the fd Jacobian
                # holds relative promoted inputs
                if fd_ikey not in params:
                    for key in params:
                        meta = params.metadata(key)
                        if meta['promoted_name'] == fd_ikey:
                            fd_ikey = meta['pathname']
                            break

            return fd_ikey

        if return_format == 'dict':
            J = {}
            for okey in unknown_list:
                J[okey] = {}
                for ikey in param_list:
                    fd_ikey = get_fd_ikey(ikey)
                    J[okey][ikey] = Jfd[(okey, fd_ikey)]
        else:
            usize = 0
            psize = 0
            for u in unknown_list:
                usize += self.root.unknowns.metadata(u)['size']
            for p in param_list:
                psize += self.root.unknowns.metadata(p)['size']
            J = np.zeros((usize, psize))

            ui = 0
            for u in unknown_list:
                pi = 0
                for p in param_list:
                    pd = Jfd[u, get_fd_ikey(p)]
                    rows, cols = pd.shape
                    for row in range(0, rows):
                        for col in range(0, cols):
                            J[ui+row][pi+col] = pd[row][col]
                    pi+=1
                ui+=1
        return J

    def _calc_gradient_ln_solver(self, param_list, unknown_list, return_format, mode):
        """ Returns the gradient for the system that is slotted in
        self.root. The gradient is calculated using root.ln_solver.

        Args
        ----
        param_list : list of strings, optional
            List of parameter name strings with respect to which derivatives
            are desired. All params must have a paramcomp.

        unknown_list : list of strings, optional
            List of output or state name strings for derivatives to be
            calculated. All must be valid unknowns in OpenMDAO.

        return_format : string, optional
            Format for the derivatives, can be 'array' or 'dict'.

        mode : string, optional
            Deriviative direction, can be 'fwd', 'rev', 'fd', or 'auto'.
            Default is 'auto', which uses mode specified on the linear solver
            in root.

        Returns
        -------
        ndarray or dict
            Jacobian of unknowns with respect to params.
        """

        root = self.root
        unknowns = root.unknowns
        params = root.params
        iproc = root.comm.rank

        # Respect choice of mode based on precedence.
        # Call arg > ln_solver option > auto-detect
        mode = self._mode(mode, param_list, unknown_list)

        # Prepare model for calculation
        root.clear_dparams()
        for names in root._relevance.vars_of_interest(mode):
            for name in names:
                if name in root.dumat:
                    root.dumat[name].vec[:] = 0.0
                    root.drmat[name].vec[:] = 0.0
        root.dumat[None].vec[:] = 0.0
        root.drmat[None].vec[:] = 0.0

        # Linearize Model
        root.jacobian(params, unknowns, root.resids)

        # Initialize Jacobian
        if return_format == 'dict':
            J = {}
            for okeys in unknown_list:
                if isinstance(okeys, str):
                    okeys = (okeys,)
                for okey in okeys:
                    J[okey] = {}
                    for ikeys in param_list:
                        if isinstance(ikeys, str):
                            ikeys = (ikeys,)
                        for ikey in ikeys:
                            J[okey][ikey] = None
        else:
            usize = 0
            psize = 0
            for u in unknown_list:
                usize += self.root.unknowns.metadata(u)['size']
            for p in param_list:
                psize += self.root.unknowns.metadata(p)['size']
            J = np.zeros((usize, psize))

        if mode == 'fwd':
            input_list, output_list = param_list, unknown_list
            poi_indices, qoi_indices = self._poi_indices, self._qoi_indices
        else:
            input_list, output_list = unknown_list, param_list
            qoi_indices, poi_indices = self._poi_indices, self._qoi_indices

        # Process our inputs/outputs of interest for parallel groups
        all_vois = self.root._relevance.vars_of_interest(mode)

        input_set = set()
        for inp in input_list:
            if isinstance(inp, str):
                input_set.add(inp)
            else:
                input_set.update(inp)

        # Our variables of interest inlude all sets for which at least
        # one variable is requested.
        voi_sets = []
        for voi_set in all_vois:
            for voi in voi_set:
                if voi in input_set:
                    voi_sets.append(voi_set)
                    break

        # Add any variables that the user "forgot". TODO: This won't be
        # necessary when we have an API to automatically generate the
        # IOI and OOI.
        flat_voi = [item for sublist in all_vois for item in sublist]
        for items in input_list:
            if isinstance(items, str):
                items = (items,)
            for item in items:
                if item not in flat_voi:
                    # Put them in serial groups
                    voi_sets.append((item,))

        voi_srcs = {}

        # If Forward mode, solve linear system for each param
        # If Adjoint mode, solve linear system for each unknown
        j = 0
        for params in voi_sets:
            rhs = {}
            voi_idxs = {}

            # Allocate all of our Right Hand Sides for this parallel set.
            for voi in params:
                vkey = voi if len(params) > 1 else None

                duvec = self.root.dumat[vkey]
                rhs[vkey] = np.zeros((len(duvec.vec), ))

                voi_srcs[vkey] = voi
                in_size, in_idxs = duvec.get_local_idxs(voi, poi_indices)
                voi_idxs[vkey] = in_idxs

            # TODO: check that all vois are the same size!!!

            jbase = j

            for i in range(len(in_idxs)):
                for voi in params:
                    vkey = voi if len(params) > 1 else None
                    # only set a 1.0 in the entry if that var is 'owned' by this rank
                    if self.root._owning_ranks[voi_srcs[vkey]] == iproc:
                        #print("setting %s to 1.0 in rank %d" % (voi, iproc))
                        rhs[vkey][voi_idxs[vkey][i]] = 1.0

                # Solve the linear system
                dx_mat = root.ln_solver.solve(rhs, root, mode)

                for voi in rhs:
                    rhs[voi][voi_idxs[voi][i]] = 0.0

                for param, dx in dx_mat.items():
                    if len(params) == 1:
                        vkey = None
                        param = params[0] # if voi is None, params has only one serial entry
                    else:
                        vkey = param

                    i = 0
                    for item in output_list:

                        out_size, out_idxs = self.root.dumat[vkey].get_local_idxs(item,
                                                                                  qoi_indices)
                        nk = len(out_idxs)

                        if return_format == 'dict':
                            if mode == 'fwd':
                                if J[item][param] is None:
                                    J[item][param] = np.zeros((nk, len(in_idxs)))
                                J[item][param][:, j-jbase] = dx[out_idxs]
                            else:
                                if J[param][item] is None:
                                    J[param][item] = np.zeros((len(in_idxs), nk))
                                J[param][item][j-jbase, :] = dx[out_idxs]
                        else:
                            if mode == 'fwd':
                                J[i:i+nk, j] = dx[out_idxs]
                            else:
                                J[j, i:i+nk] = dx[out_idxs]
                            i += nk
                j += 1

        return J

    def check_partial_derivatives(self, out_stream=sys.stdout):
        """ Checks partial derivatives comprehensively for all components in
        your model.

        Args
        ----

        out_stream : file_like
            Where to send human readable output. Default is sys.stdout. Set to
            None to suppress.

        Returns
        -------
        Dict of Dicts of Dicts of Tuples of Floats.

        First key is the component name; 2nd key is the (output, input) tuple
        of strings; third key is one of ['rel error', 'abs error',
        'magnitude', 'fdstep']; Tuple contains norms for forward - fd,
        adjoint - fd, forward - adjoint using the best case fdstep.
        """

        root = self.root

        # Linearize the model
        root.jacobian(root.params, root.unknowns, root.resids)

        if out_stream is not None:
            out_stream.write('Partial Derivatives Check\n\n')

        data = {}
        skip_keys = []

        # Derivatives should just be checked without parallel adjoint for now.
        voi = None

        # Check derivative calculations for all comps at every level of the
        # system hierarchy.
        for comp in root.components(recurse=True):
            cname = comp.pathname

            # No need to check comps that don't have any derivs.
            if comp.fd_options['force_fd'] == True:
                continue

            # Paramcomps are just clutter too.
            if isinstance(comp, ParamComp):
                continue

            data[cname] = {}
            jac_fwd = {}
            jac_rev = {}
            jac_fd = {}

            params = comp.params
            unknowns = comp.unknowns
            resids = comp.resids
            dparams = comp.dpmat[voi]
            dunknowns = comp.dumat[voi]
            dresids = comp.drmat[voi]

            if out_stream is not None:
                out_stream.write('-'*(len(cname)+15) + '\n')
                out_stream.write("Component: '%s'\n" % cname)
                out_stream.write('-'*(len(cname)+15) + '\n')

            # Figure out implicit states for this comp
            states = [n for n,m in comp.unknowns.items() if m.get('state')]

            # Create all our keys and allocate Jacs
            for p_name in chain(dparams, states):

                dinputs = dunknowns if p_name in states else dparams
                p_size = np.size(dinputs[p_name])

                # Check dimensions of user-supplied Jacobian
                for u_name in unknowns:

                    u_size = np.size(dunknowns[u_name])
                    if comp._jacobian_cache:

                        # Go no further if we aren't defined.
                        if (u_name, p_name) not in comp._jacobian_cache:
                            skip_keys.append((u_name, p_name))
                            continue

                        user = comp._jacobian_cache[(u_name, p_name)].shape

                        # User may use floats for scalar jacobians
                        if len(user) < 2:
                            user = (user[0], 1)

                        if user[0] != u_size or user[1] != p_size:
                            msg = "Jacobian in component '{}' between the" + \
                            " variables '{}' and '{}' is the wrong size. " + \
                            "It should be {} by {}"
                            msg = msg.format(cname, p_name, u_name, p_size,
                                             u_size)
                            raise ValueError(msg)

                    jac_fwd[(u_name, p_name)] = np.zeros((u_size, p_size))
                    jac_rev[(u_name, p_name)] = np.zeros((u_size, p_size))

            # Reverse derivatives first
            for u_name in dresids:
                u_size = np.size(dunknowns[u_name])

                # Send columns of identity
                for idx in range(u_size):
                    dresids.vec[:] = 0.0
                    root.clear_dparams()
                    dunknowns.vec[:] = 0.0

                    dresids.flat[u_name][idx] = 1.0
                    try:
                        dparams._set_adjoint_mode(True)
                        comp.apply_linear(params, unknowns, dparams,
                                          dunknowns, dresids, 'rev')
                    finally:
                        dparams._set_adjoint_mode(False)

                    for p_name in chain(dparams, states):
                        if (u_name, p_name) in skip_keys:
                            continue

                        dinputs = dunknowns if p_name in states else dparams

                        jac_rev[(u_name, p_name)][idx, :] = dinputs.flat[p_name]

            # Forward derivatives second
            for p_name in chain(dparams, states):

                dinputs = dunknowns if p_name in states else dparams
                p_size = np.size(dinputs[p_name])

                # Send columns of identity
                for idx in range(p_size):
                    dresids.vec[:] = 0.0
                    root.clear_dparams()
                    dunknowns.vec[:] = 0.0

                    dinputs.flat[p_name][idx] = 1.0
                    comp.apply_linear(params, unknowns, dparams,
                                      dunknowns, dresids, 'fwd')

                    for u_name in dresids:
                        if (u_name, p_name) in skip_keys:
                            continue

                        jac_fwd[(u_name, p_name)][:, idx] = dresids.flat[u_name]

            # Finite Difference goes last
            dresids.vec[:] = 0.0
            root.clear_dparams()
            dunknowns.vec[:] = 0.0
            jac_fd = comp.fd_jacobian(params, unknowns, resids,
                                      step_size=1e-6)

            # Assemble and Return all metrics.
            _assemble_deriv_data(chain(dparams, states), resids, data[cname],
                                 jac_fwd, jac_rev, jac_fd, out_stream,
                                 skip_keys, c_name=cname)

        return data

    def check_total_derivatives(self, out_stream=sys.stdout):
        """ Checks total derivatives for problem defined at the top.

        Args
        ----

        out_stream : file_like
            Where to send human readable output. Default is sys.stdout. Set to
            None to suppress.

        Returns
        -------
        Dict of Dicts of Tuples of Floats

        First key is the (output, input) tuple of strings; second key is one
        of ['rel error', 'abs error', 'magnitude', 'fdstep']; Tuple contains
        norms for forward - fd, adjoint - fd, forward - adjoint using the
        best case fdstep.
        """

        if out_stream is not None:
            out_stream.write('Total Derivatives Check\n\n')

        # Params and Unknowns that we provide at this level.
        abs_param_list = self.root._get_fd_params()
        param_srcs = [self.root.connections[p] for p in abs_param_list]
        unknown_list = self.root._get_fd_unknowns()

        # Convert absolute parameter names to promoted ones because it is
        # easier for the user to read.
        param_list = [self.root._unknowns_dict[p]['promoted_name'] for p in param_srcs]

        # Calculate all our Total Derivatives
        Jfor = self.calc_gradient(param_list, unknown_list, mode='fwd',
                                  return_format='dict')
        Jrev = self.calc_gradient(param_list, unknown_list, mode='rev',
                                  return_format='dict')
        Jfd = self.calc_gradient(param_list, unknown_list, mode='fd',
                                 return_format='dict')

        Jfor = _jac_to_flat_dict(Jfor)
        Jrev = _jac_to_flat_dict(Jrev)
        Jfd = _jac_to_flat_dict(Jfd)

        # Assemble and Return all metrics.
        data = {}
        _assemble_deriv_data(param_list, unknown_list, data,
                             Jfor, Jrev, Jfd, out_stream)

        return data

    def _start_recorders(self):
        for recorder in self.driver.recorders:
            recorder.startup(self.root)

        for group in self.root.subgroups(recurse=True, include_self=True):
            for solver in (group.nl_solver, group.ln_solver):
                for recorder in solver.recorders:
                    recorder.startup(group)

    def _check_for_matrix_matrix(self, params, unknowns):
        """ Checks a system hiearchy to make sure that no settings violate the
        assumptions needed for matrix-matrix calculation. Returns the mode that
        the system needs to use.
        """

        mode = self._mode('auto', params, unknowns)

        # TODO : Only Linear GS is supported on system

        for sub in self.root.subgroups(recurse=True):
            sub_mode = sub.ln_solver.options['mode']

            # Modes must match root for all subs
            if sub_mode not in (mode, 'auto'):
                msg  = "Group '{name}' has mode '{submode}' but the root group has mode '{rootmode}'." \
                        " Modes must match to use Matrix Matrix."
                msg = msg.format(name=sub.name, submode=sub_mode, rootmode=mode)
                raise RuntimeError(msg)

            # TODO : Only Linear GS is supported on sub

        return mode

    def json_system_tree(self):

        def _tree_dict(system):
            dct = OrderedDict()
            for s in system.subsystems(recurse=True):
                if isinstance(s, Group):
                    dct[s.name] = _tree_dict(s)
                else:
                    dct[s.name] = OrderedDict()
                    for vname, meta in s.unknowns.items():
                        dct[s.name][vname] = m = meta.copy()
                        for mname in m:
                            if isinstance(m[mname], np.ndarray):
                                m[mname] = m[mname].tolist()
            return dct

        tree = OrderedDict()
        tree['root'] = _tree_dict(self.root)
        return json.dumps(tree)

    def json_dependencies(self):
        return self.root._relevance.json_dependencies()


    def _setup_units(self, connections, params_dict, unknowns_dict):
        """
        Calculate unit conversion factors for any connected
        variables having different units and store them in params_dict.

        Args
        ----
        connections : dict
            A dict of target variables (absolute name) mapped
            to the absolute name of their source variable.

        params_dict : OrderedDict
            A dict of parameter metadata for the whole `Problem`.

        unknowns_dict : OrderedDict
            A dict of unknowns metadata for the whole `Problem`.
        """

        self._unit_diffs = {}
        for target, source in connections.items():
            tmeta = params_dict[target]
            smeta = unknowns_dict[source]

            # units must be in both src and target to have a conversion
            if 'units' not in tmeta or 'units' not in smeta:
                # for later reporting in check_setup, keep track of any unit differences,
                # even for connections where one side has units and the other doesn't
                if 'units' in tmeta or 'units' in smeta:
                    self._unit_diffs[(source, target)] = (smeta.get('units'),
                                                          tmeta.get('units'))
                continue

            src_unit = smeta['units']
            tgt_unit = tmeta['units']

            try:
                scale, offset = get_conversion_tuple(src_unit, tgt_unit)
            except TypeError as err:
                if str(err) == "Incompatible units":
                    msg = "Unit '{s[units]}' in source '{s[promoted_name]}' "\
                        "is incompatible with unit '{t[units]}' "\
                        "in target '{t[promoted_name]}'.".format(s=smeta, t=tmeta)
                    raise TypeError(msg)
                else:
                    raise

            # If units are not equivalent, store unit conversion tuple
            # in the parameter metadata
            if scale != 1.0 or offset != 0.0:
                tmeta['unit_conv'] = (scale, offset)
                self._unit_diffs[(source, target)] = (smeta.get('units'),
                                                      tmeta.get('units'))
Esempio n. 3
0
    def driver(self):
        # type: () -> Driver
        """Method to return a preconfigured driver.

        Returns
        -------
            Driver
                A preconfigured driver element to be used for the Problem instance.

        Raises
        ------
            ValueError
                Value error are raised if unsupported settings are encountered.
        """
        if self.driver_type == 'optimizer':
            # Find optimizer element in CMDOWS file
            opt_uid = self.driver_uid
            opt_elem = get_element_by_uid(self.elem_cmdows, opt_uid)
            # Load settings from CMDOWS file
            opt_package = get_opt_setting_safe(opt_elem, 'package', 'SciPy')
            opt_algo = get_opt_setting_safe(opt_elem, 'algorithm', 'SLSQP')
            opt_maxiter = get_opt_setting_safe(opt_elem,
                                               'maximumIterations',
                                               50,
                                               expected_type='int')
            opt_convtol = get_opt_setting_safe(opt_elem,
                                               'convergenceTolerance',
                                               1e-6,
                                               expected_type='float')

            # Apply settings to the driver
            # driver
            if opt_package == 'SciPy':
                driver = ScipyOptimizeDriver()
            elif opt_package == 'pyOptSparse':
                try:
                    from openmdao.api import pyOptSparseDriver
                except ImportError:
                    raise PyOptSparseImportError()
                driver = pyOptSparseDriver()
            else:
                raise ValueError(
                    'Unsupported package {} encountered in CMDOWS file for "{}".'
                    .format(opt_package, opt_uid))

            # optimization algorithm
            if opt_algo == 'SLSQP':
                driver.options['optimizer'] = 'SLSQP'
            elif opt_algo == 'COBYLA':
                driver.options['optimizer'] = 'COBYLA'
            elif opt_algo == 'L-BFGS-B':
                driver.options['optimizer'] = 'L-BFGS-B'
            else:
                raise ValueError(
                    'Unsupported algorithm {} encountered in CMDOWS file for "{}".'
                    .format(opt_algo, opt_uid))

            # maximum iterations and tolerance
            if isinstance(driver, ScipyOptimizeDriver):
                driver.options['maxiter'] = opt_maxiter
                driver.options['tol'] = opt_convtol
            elif isinstance(driver, pyOptSparseDriver):
                driver.opt_settings['MAXIT'] = opt_maxiter
                driver.opt_settings['ACC'] = opt_convtol

            # Set default display and output settings
            if isinstance(driver, ScipyOptimizeDriver):
                driver.options['disp'] = False  # Print the result
            return driver
        elif self.driver_type == 'doe':
            # Find DOE element in CMDOWS file
            doe_uid = self.driver_uid
            doe_elem = get_element_by_uid(self.elem_cmdows, doe_uid)
            # Load settings from CMDOWS file
            doe_method = get_doe_setting_safe(doe_elem, 'method',
                                              'Uniform design')  # type: str
            doe_runs = get_doe_setting_safe(doe_elem,
                                            'runs',
                                            5,
                                            expected_type='int',
                                            doe_method=doe_method,
                                            required_for_doe_methods=[
                                                'Latin hypercube design',
                                                'Uniform design',
                                                'Monte Carlo design'
                                            ])
            doe_center_runs = get_doe_setting_safe(
                doe_elem,
                'centerRuns',
                2,
                expected_type='int',
                doe_method=doe_method,
                required_for_doe_methods=['Box-Behnken design'])
            doe_seed = get_doe_setting_safe(doe_elem,
                                            'seed',
                                            None,
                                            expected_type='int',
                                            doe_method=doe_method,
                                            required_for_doe_methods=[
                                                'Latin hypercube design',
                                                'Uniform design',
                                                'Monte Carlo design'
                                            ])
            doe_levels = get_doe_setting_safe(
                doe_elem,
                'levels',
                2,
                expected_type='int',
                doe_method=doe_method,
                required_for_doe_methods=['Full factorial design'])

            # table
            doe_data = []
            if isinstance(doe_elem.find('settings/table'), _Element):
                doe_table = doe_elem.find('settings/table')
                doe_table_rows = [row for row in doe_table.iterchildren()]
                n_samples = len(
                    [exp for exp in doe_table_rows[0].iterchildren()])
                for idx in range(n_samples):
                    data_sample = []
                    for row_elem in doe_table_rows:
                        value = float(
                            row_elem.find(
                                'tableElement[@experimentID="{}"]'.format(
                                    idx)).text)
                        data_sample.append(
                            [row_elem.attrib['relatedParameterUID'], value])
                    doe_data.append(data_sample)
            else:
                if doe_method in ['Custom design table']:
                    raise ValueError(
                        'Table element with data for custom design table missing in '
                        'CMDOWS file.')

            # Apply settings to the driver
            # define driver
            driver = DOEDriver()

            # define generator
            if doe_method in ['Uniform design', 'Monte Carlo design']:
                driver.options['generator'] = UniformGenerator(
                    num_samples=doe_runs, seed=doe_seed)
            elif doe_method == 'Full factorial design':
                driver.options['generator'] = FullFactorialGenerator(
                    levels=doe_levels)
            elif doe_method == 'Box-Behnken design':
                driver.options['generator'] = BoxBehnkenGenerator(
                    center=doe_center_runs)
            elif doe_method == 'Latin hypercube design':
                driver.options['generator'] = LatinHypercubeGenerator(
                    samples=doe_runs, criterion='maximin', seed=doe_seed)
            elif doe_method == 'Custom design table':
                driver.options['generator'] = ListGenerator(data=doe_data)
            else:
                raise ValueError(
                    'Could not match the doe_method {} with methods from OpenMDAO.'
                    .format(doe_method))
            return driver
        else:
            return Driver()