Esempio n. 1
0
    def test_double_arraycomp(self):
        # Mainly testing a bug in the array return for multiple arrays

        group = Group()
        group.add('x_param1', IndepVarComp('x1', np.ones((2))), promotes=['*'])
        group.add('x_param2', IndepVarComp('x2', np.ones((2))), promotes=['*'])
        group.add('mycomp', DoubleArrayComp(), promotes=['*'])

        prob = Problem(impl=impl)
        prob.root = group
        prob.root.ln_solver = PetscKSP()
        prob.setup(check=False)
        prob.run()

        Jbase = group.mycomp.JJ

        J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'], mode='fwd',
                               return_format='array')
        diff = np.linalg.norm(J - Jbase)
        assert_rel_error(self, diff, 0.0, 1e-8)

        J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'], mode='fd',
                               return_format='array')
        diff = np.linalg.norm(J - Jbase)
        assert_rel_error(self, diff, 0.0, 1e-8)

        J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'], mode='rev',
                               return_format='array')
        diff = np.linalg.norm(J - Jbase)
        assert_rel_error(self, diff, 0.0, 1e-8)
Esempio n. 2
0
    def __init__(self):
        super(ConvergeDivergeGroups, self).__init__()

        self.add('p', ParamComp('x', 2.0))

        sub1 = self.add('sub1', Group())
        sub1.add('comp1', Comp1())

        sub2 = sub1.add('sub2', Group())
        sub2.add('comp2', Comp2())
        sub2.add('comp3', Comp3())
        sub1.add('comp4', Comp4())

        sub3 = self.add('sub3', Group())
        sub3.add('comp5', Comp5())
        sub3.add('comp6', Comp6())
        self.add('comp7', Comp7())

        self.connect("p.x", "sub1.comp1.x1")
        self.connect('sub1.comp1.y1', 'sub1.sub2.comp2.x1')
        self.connect('sub1.comp1.y2', 'sub1.sub2.comp3.x1')
        self.connect('sub1.sub2.comp2.y1', 'sub1.comp4.x1')
        self.connect('sub1.sub2.comp3.y1', 'sub1.comp4.x2')
        self.connect('sub1.comp4.y1', 'sub3.comp5.x1')
        self.connect('sub1.comp4.y2', 'sub3.comp6.x1')
        self.connect('sub3.comp5.y1', 'comp7.x1')
        self.connect('sub3.comp6.y1', 'comp7.x2')
Esempio n. 3
0
    def test_simple_array_model(self):
        prob = Problem()
        prob.root = Group()
        prob.root.add(
            'comp',
            ExecComp(['y[0]=2.0*x[0]+7.0*x[1]', 'y[1]=5.0*x[0]-3.0*x[1]'],
                     x=np.zeros([2]),
                     y=np.zeros([2])))

        prob.root.add('p1', ParamComp('x', np.ones([2])))

        prob.root.connect('p1.x', 'comp.x')

        prob.setup(check=False)
        prob.run()

        data = prob.check_partial_derivatives(out_stream=None)

        assert_rel_error(self, data['comp'][('y', 'x')]['abs error'][0], 0.0,
                         1e-5)
        assert_rel_error(self, data['comp'][('y', 'x')]['abs error'][1], 0.0,
                         1e-5)
        assert_rel_error(self, data['comp'][('y', 'x')]['abs error'][2], 0.0,
                         1e-5)
        assert_rel_error(self, data['comp'][('y', 'x')]['rel error'][0], 0.0,
                         1e-5)
        assert_rel_error(self, data['comp'][('y', 'x')]['rel error'][1], 0.0,
                         1e-5)
        assert_rel_error(self, data['comp'][('y', 'x')]['rel error'][2], 0.0,
                         1e-5)
Esempio n. 4
0
    def test_parab_FD_subbed_Pcomps(self):

        model = Problem(impl=impl)
        root = model.root = Group()
        par = root.add('par', ParallelGroup())

        par.add('s1', MP_Point(root=2.0))
        par.add('s2', MP_Point(root=3.0))

        root.add('sumcomp', ExecComp('sum = x1+x2'))
        root.connect('par.s1.c.y', 'sumcomp.x1')
        root.connect('par.s2.c.y', 'sumcomp.x2')

        driver = model.driver = pyOptSparseDriver()
        driver.add_param('par.s1.p.x', low=-100, high=100)
        driver.add_param('par.s2.p.x', low=-100, high=100)
        driver.add_objective('sumcomp.sum')

        root.fd_options['force_fd'] = True

        model.setup(check=False)
        model.run()

        if not MPI or self.comm.rank == 0:
            assert_rel_error(self, model['par.s1.p.x'], 2.0, 1.e-6)

        if not MPI or self.comm.rank == 1:
            assert_rel_error(self, model['par.s2.p.x'], 3.0, 1.e-6)
Esempio n. 5
0
    def test_simple(self):
        group = Group()
        group.add('x_param', IndepVarComp('x', 1.0), promotes=['*'])
        group.add('mycomp', SimpleCompDerivMatVec(), promotes=['x', 'y'])

        prob = Problem(impl=impl)
        prob.root = group
        prob.root.ln_solver = PetscKSP()
        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['x'], ['y'], mode='fwd', return_format='dict')
        assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)

        J = prob.calc_gradient(['x'], ['y'], mode='rev', return_format='dict')
        assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)
Esempio n. 6
0
    def test_parab_FD(self):

        model = Problem(impl=impl)
        root = model.root = Group()
        par = root.add('par', ParallelGroup())

        par.add('c1', Parab1D(root=2.0))
        par.add('c2', Parab1D(root=3.0))

        root.add('p1', ParamComp('x', val=0.0))
        root.add('p2', ParamComp('x', val=0.0))
        root.connect('p1.x', 'par.c1.x')
        root.connect('p2.x', 'par.c2.x')

        root.add('sumcomp', ExecComp('sum = x1+x2'))
        root.connect('par.c1.y', 'sumcomp.x1')
        root.connect('par.c2.y', 'sumcomp.x2')

        driver = model.driver = pyOptSparseDriver()
        driver.add_param('p1.x', low=-100, high=100)
        driver.add_param('p2.x', low=-100, high=100)
        driver.add_objective('sumcomp.sum')

        root.fd_options['force_fd'] = True

        model.setup(check=False)
        model.run()

        if not MPI or self.comm.rank == 0:
            assert_rel_error(self, model['p1.x'], 2.0, 1.e-6)
            assert_rel_error(self, model['p2.x'], 3.0, 1.e-6)
Esempio n. 7
0
    def test_simple_jac(self):
        group = Group()
        group.add('x_param', IndepVarComp('x', 1.0), promotes=['*'])
        group.add('mycomp', ExecComp(['y=2.0*x']), promotes=['x', 'y'])

        prob = Problem()
        prob.root = group
        prob.root.ln_solver = DirectSolver()
        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['x'], ['y'], mode='fwd', return_format='dict')
        assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)

        J = prob.calc_gradient(['x'], ['y'], mode='rev', return_format='dict')
        assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)
Esempio n. 8
0
    def test_simple_array_model2(self):
        prob = Problem()
        prob.root = Group()
        comp = prob.root.add(
            'comp',
            ExecComp('y = mat.dot(x)',
                     x=np.zeros((2, )),
                     y=np.zeros((2, )),
                     mat=np.array([[2., 7.], [5., -3.]])))

        p1 = prob.root.add('p1', ParamComp('x', np.ones([2])))

        prob.root.connect('p1.x', 'comp.x')

        prob.setup(check=False)
        prob.run()

        data = prob.check_partial_derivatives(out_stream=None)

        assert_rel_error(self, data['comp'][('y', 'x')]['abs error'][0], 0.0,
                         1e-5)
        assert_rel_error(self, data['comp'][('y', 'x')]['abs error'][1], 0.0,
                         1e-5)
        assert_rel_error(self, data['comp'][('y', 'x')]['abs error'][2], 0.0,
                         1e-5)
        assert_rel_error(self, data['comp'][('y', 'x')]['rel error'][0], 0.0,
                         1e-5)
        assert_rel_error(self, data['comp'][('y', 'x')]['rel error'][1], 0.0,
                         1e-5)
        assert_rel_error(self, data['comp'][('y', 'x')]['rel error'][2], 0.0,
                         1e-5)
Esempio n. 9
0
    def test_unequal_training_outputs(self):
        meta = MetaModel()
        meta.add_param('x', 0.)
        meta.add_param('y', 0.)
        meta.add_output('f', 0.)
        meta.default_surrogate = FloatKrigingSurrogate()

        prob = Problem(Group())
        prob.root.add('meta', meta)
        prob.setup(check=False)

        prob['meta.train:x'] = [1.0, 1.0, 1.0, 1.0]
        prob['meta.train:y'] = [1.0, 2.0, 3.0, 4.0]
        prob['meta.train:f'] = [1.0, 1.0]

        prob['meta.x'] = 1.0
        prob['meta.y'] = 1.0

        with self.assertRaises(RuntimeError) as cm:
            prob.run()

        expected = "MetaModel: Each variable must have the same number" \
                   " of training points. Expected 4 but found" \
                   " 2 points for 'f'."

        self.assertEqual(str(cm.exception), expected)
Esempio n. 10
0
    def test_simple_in_group_matvec(self):
        group = Group()
        sub = group.add('sub', Group(), promotes=['x', 'y'])
        group.add('x_param', ParamComp('x', 1.0), promotes=['*'])
        sub.add('mycomp', SimpleCompDerivMatVec(), promotes=['x', 'y'])

        prob = Problem()
        prob.root = group
        prob.root.ln_solver = ExplicitSolver()
        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['x'], ['y'], mode='fwd', return_format='dict')
        assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)

        J = prob.calc_gradient(['x'], ['y'], mode='rev', return_format='dict')
        assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)
Esempio n. 11
0
    def test_simple_matvec_subbed(self):
        group = Group()
        group.add('mycomp', SimpleCompDerivMatVec(), promotes=['x', 'y'])

        prob = Problem()
        prob.root = Group()
        prob.root.add('x_param', ParamComp('x', 1.0), promotes=['*'])
        prob.root.add('sub', group, promotes=['*'])

        prob.root.ln_solver = ExplicitSolver()
        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['x'], ['y'], mode='fwd', return_format='dict')
        assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)

        J = prob.calc_gradient(['x'], ['y'], mode='rev', return_format='dict')
        assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)
Esempio n. 12
0
    def test_array2D(self):
        group = Group()
        group.add('x_param', IndepVarComp('x', np.ones((2, 2))), promotes=['*'])
        group.add('mycomp', ArrayComp2D(), promotes=['x', 'y'])

        prob = Problem(impl=impl)
        prob.root = group
        prob.root.ln_solver = PetscKSP()
        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['x'], ['y'], mode='fwd', return_format='dict')
        Jbase = prob.root.mycomp._jacobian_cache
        diff = np.linalg.norm(J['y']['x'] - Jbase['y', 'x'])
        assert_rel_error(self, diff, 0.0, 1e-8)

        J = prob.calc_gradient(['x'], ['y'], mode='rev', return_format='dict')
        diff = np.linalg.norm(J['y']['x'] - Jbase['y', 'x'])
        assert_rel_error(self, diff, 0.0, 1e-8)
Esempio n. 13
0
    def test_math(self):
        prob = Problem(root=Group())
        C1 = prob.root.add('C1', ExecComp('y=sin(x)', x=2.0))
        self.assertTrue('x' in C1._params_dict)
        self.assertTrue('y' in C1._unknowns_dict)

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, C1.unknowns['y'], math.sin(2.0), 0.00001)
Esempio n. 14
0
    def test_array_to_scalar(self):
        root = Group()

        root.add('P1', ParamComp('x', np.array([2., 3.])))
        root.add('C1', SimpleComp())
        root.add('C2', ExecComp('y = x * 3.', y=0., x=0.))

        root.connect('P1.x', 'C1.x', src_indices=[0,])
        root.connect('P1.x', 'C2.x', src_indices=[1,])

        prob = Problem(root)
        prob.setup(check=False)
        prob.run()

        self.assertAlmostEqual(root.C1.params['x'], 2.)
        self.assertAlmostEqual(root.C2.params['x'], 3.)
    def test_fd_options_meta_step_size(self):
        class MetaParaboloid(Component):
            """ Evaluates the equation f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3 """
            def __init__(self):
                super(MetaParaboloid, self).__init__()

                # Params
                self.add_param('x', 1.0, fd_step_size=1.0e5)
                self.add_param('y', 1.0, fd_step_size=1.0e5)

                # Unknowns
                self.add_output('f_xy', 0.0)

            def solve_nonlinear(self, params, unknowns, resids):
                """f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3
                Optimal solution (minimum): x = 6.6667; y = -7.3333
                """

                x = params['x']
                y = params['y']

                f_xy = ((x - 3.0)**2 + x * y + (y + 4.0)**2 - 3.0)
                unknowns['f_xy'] = f_xy

            def jacobian(self, params, unknowns, resids):
                """Analytical derivatives"""

                x = params['x']
                y = params['y']
                J = {}

                J['f_xy', 'x'] = (2.0 * x - 6.0 + y)
                J['f_xy', 'y'] = (2.0 * y + 8.0 + x)

                return J

        prob = Problem()
        prob.root = Group()
        comp = prob.root.add('comp', MetaParaboloid())
        prob.root.add('p1', ParamComp('x', 15.0))
        prob.root.add('p2', ParamComp('y', 15.0))
        prob.root.connect('p1.x', 'comp.x')
        prob.root.connect('p2.y', 'comp.y')

        comp.fd_options['force_fd'] = True

        prob.setup(check=False)
        prob.run()

        # Make sure bad meta step_size is used
        # Derivative should be way high with this.

        J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
        self.assertGreater(J['comp.f_xy']['p1.x'][0][0], 1000.0)
    def __init__(self):
        super(TestProb, self).__init__()

        self.root = root = Group()
        root.add('c1', SimpleArrayComp())
        root.add('p1', ParamComp('p', 1 * np.ones(2)))
        root.connect('p1.p', 'c1.x')

        root.add('ci1', SimpleImplicitComp())
        root.add('pi1', ParamComp('p', 1.))
        root.connect('pi1.p', 'ci1.x')
Esempio n. 17
0
    def test_array(self):
        prob = Problem(root=Group())
        C1 = prob.root.add('C1',
                           ExecComp('y=x[1]', x=np.array([1., 2., 3.]), y=0.0))
        self.assertTrue('x' in C1._params_dict)
        self.assertTrue('y' in C1._unknowns_dict)

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, C1.unknowns['y'], 2.0, 0.00001)
Esempio n. 18
0
    def test_prom_conns(self):
        # this test mimics some of the connections found in test_nozzle in pycycle. The bug was that
        # an unknown that was connected to one parameter
        # (desVars.Ps_exhaust to nozzle.press_calcs.Ps_exhaust), was not being connected to the
        # other parameters ('nozzle.ideal_flow.chem_eq.n2ls.P', 'nozzle.ideal_flow.mach_calc.Ps',
        # and 'nozzle.ideal_flow.props.tp2props.P') that were connected via input-input connections
        # to nozzle.press_calcs.Ps_exhaust.

        prob = Problem(root=Group())
        root = prob.root
        desVars = root.add("desVars",
                           ParamComp('Ps_exhaust', 1.0),
                           promotes=('Ps_exhaust', ))
        nozzle = root.add("nozzle", Group())
        press_calcs = nozzle.add('press_calcs',
                                 ExecComp('out=Ps_exhaust'),
                                 promotes=('Ps_exhaust', ))
        ideal_flow = nozzle.add("ideal_flow", Group())
        chem_eq = ideal_flow.add('chem_eq', Group(), promotes=('P', ))
        n2ls = chem_eq.add("n2ls", ExecComp('out=P'), promotes=('P', ))
        props = ideal_flow.add("props", Group(), promotes=('P', ))
        tp2props = props.add("tp2props", ExecComp('out=P'), promotes=('P', ))
        mach_calc = ideal_flow.add("mach_calc",
                                   ExecComp('out=Ps'),
                                   promotes=('Ps', ))

        nozzle.connect('Ps_exhaust', 'ideal_flow.Ps')
        root.connect('Ps_exhaust', 'nozzle.Ps_exhaust')
        ideal_flow.connect('Ps', 'P')

        prob.setup(check=False)

        expected_targets = set([
            'nozzle.ideal_flow.chem_eq.n2ls.P',
            'nozzle.press_calcs.Ps_exhaust', 'nozzle.ideal_flow.mach_calc.Ps',
            'nozzle.ideal_flow.props.tp2props.P'
        ])
        self.assertEqual(set(prob.root.connections), expected_targets)

        for tgt in expected_targets:
            self.assertTrue('desVars.Ps_exhaust' in prob.root.connections[tgt])
Esempio n. 19
0
    def setUp(self):
        self.startdir = os.getcwd()
        self.tempdir = tempfile.mkdtemp(prefix='test_extcode-')
        os.chdir(self.tempdir)
        shutil.copy(os.path.join(DIRECTORY, 'external_code_for_testing.py'),
                    os.path.join(self.tempdir, 'external_code_for_testing.py'))

        self.extcode = ExternalCodeForTesting()
        self.top = Problem()
        self.top.root = Group()

        self.top.root.add('extcode', self.extcode)
Esempio n. 20
0
    def test_double_arraycomp(self):
        # Mainly testing a bug in the array return for multiple arrays

        group = Group()
        group.add('x_param1', ParamComp('x1', np.ones((2))), promotes=['*'])
        group.add('x_param2', ParamComp('x2', np.ones((2))), promotes=['*'])
        group.add('mycomp', DoubleArrayComp(), promotes=['*'])

        prob = Problem(impl=impl)
        prob.root = group
        prob.root.ln_solver = PetscKSP()
        prob.setup(check=False)
        prob.run()

        Jbase = group.mycomp.JJ

        J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'],
                               mode='fwd',
                               return_format='array')
        diff = np.linalg.norm(J - Jbase)
        assert_rel_error(self, diff, 0.0, 1e-8)

        J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'],
                               mode='fd',
                               return_format='array')
        diff = np.linalg.norm(J - Jbase)
        assert_rel_error(self, diff, 0.0, 1e-8)

        J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'],
                               mode='rev',
                               return_format='array')
        diff = np.linalg.norm(J - Jbase)
        assert_rel_error(self, diff, 0.0, 1e-8)
Esempio n. 21
0
    def test_array_lhs(self):
        prob = Problem(root=Group())
        C1 = prob.root.add(
            'C1',
            ExecComp(['y[0]=x[1]', 'y[1]=x[0]'],
                     x=np.array([1., 2., 3.]),
                     y=np.array([0., 0.])))
        self.assertTrue('x' in C1._params_dict)
        self.assertTrue('y' in C1._unknowns_dict)

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, C1.unknowns['y'], np.array([2., 1.]), 0.00001)
Esempio n. 22
0
    def test_complex_step(self):
        prob = Problem(root=Group())
        C1 = prob.root.add('C1', ExecComp(['y=2.0*x+1.'], x=2.0))

        self.assertTrue('x' in C1._params_dict)
        self.assertTrue('y' in C1._unknowns_dict)

        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, C1.unknowns['y'], 5.0, 0.00001)

        J = C1.jacobian(C1.params, C1.unknowns, C1.resids)

        assert_rel_error(self, J[('y', 'x')], 2.0, 0.00001)
Esempio n. 23
0
    def test_linear_system(self):
        root = Group()

        root.add('lin', LinearSystem(3))

        x = np.array([1, 2, -3])
        A = np.array([[5.0, -3.0, 2.0], [1.0, 7.0, -4.0], [1.0, 0.0, 8.0]])
        b = A.dot(x)

        root.add('p1', ParamComp('A', A))
        root.add('p2', ParamComp('b', b))
        root.connect('p1.A', 'lin.A')
        root.connect('p2.b', 'lin.b')

        prob = Problem(root)
        prob.setup(check=False)
        prob.run()

        # Make sure it gets the right answer
        assert_rel_error(self, prob['lin.x'], x, .0001)
        assert_rel_error(self, np.linalg.norm(prob.root.resids.vec), 0.0,
                         1e-10)

        # Compare against calculated derivs
        Ainv = np.linalg.inv(A)
        dx_dA = np.outer(Ainv, -x).reshape(3, 9)
        dx_db = Ainv

        J = prob.calc_gradient(['p1.A', 'p2.b'], ['lin.x'],
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['lin.x']['p1.A'], dx_dA, .0001)
        assert_rel_error(self, J['lin.x']['p2.b'], dx_db, .0001)

        J = prob.calc_gradient(['p1.A', 'p2.b'], ['lin.x'],
                               mode='rev',
                               return_format='dict')
        assert_rel_error(self, J['lin.x']['p1.A'], dx_dA, .0001)
        assert_rel_error(self, J['lin.x']['p2.b'], dx_db, .0001)

        J = prob.calc_gradient(['p1.A', 'p2.b'], ['lin.x'],
                               mode='fd',
                               return_format='dict')
        assert_rel_error(self, J['lin.x']['p1.A'], dx_dA, .0001)
        assert_rel_error(self, J['lin.x']['p2.b'], dx_db, .0001)
Esempio n. 24
0
    def __init__(self):
        super(SingleDiamondGrouped, self).__init__()

        self.add('p', ParamComp('x', 2.0))

        sub1 = self.add('sub1', Group())
        sub1.add('comp1', Comp1())
        sub1.add('comp2', Comp2())
        sub1.add('comp3', Comp3())
        self.add('comp4', Comp4())

        self.connect("p.x", "sub1.comp1.x1")
        self.connect('sub1.comp1.y1', 'sub1.comp2.x1')
        self.connect('sub1.comp1.y2', 'sub1.comp3.x1')
        self.connect('sub1.comp2.y1', 'comp4.x1')
        self.connect('sub1.comp3.y1', 'comp4.x2')
    def test_fd_options_form(self):

        prob = Problem()
        prob.root = Group()
        comp = prob.root.add('comp', Paraboloid())
        prob.root.add('p1', ParamComp('x', 15.0))
        prob.root.add('p2', ParamComp('y', 15.0))
        prob.root.connect('p1.x', 'comp.x')
        prob.root.connect('p2.y', 'comp.y')

        comp.fd_options['force_fd'] = True
        comp.fd_options['form'] = 'forward'

        param_list = ['p1.x']
        unknowns_list = ['comp.f_xy']
        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(param_list, unknowns_list, return_format='dict')
        assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-6)

        # Make sure it gives good result with small stepsize
        comp.fd_options['form'] = 'backward'

        J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
        assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-6)

        # Make sure it gives good result with small stepsize
        comp.fd_options['form'] = 'central'

        J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
        assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-6)

        # Now, Make sure we really are going foward and backward
        comp.fd_options['form'] = 'forward'
        comp.fd_options['step_size'] = 1e3
        J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
        self.assertGreater(J['comp.f_xy']['p1.x'][0][0], 0.0)

        comp.fd_options['form'] = 'backward'
        J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
        self.assertLess(J['comp.f_xy']['p1.x'][0][0], 0.0)

        # Central should get pretty close even for the bad stepsize
        comp.fd_options['form'] = 'central'
        J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
        assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-1)
Esempio n. 26
0
    def test_indices(self):
        size = 10

        root = Group()

        root.add('P1', ParamComp('x', np.zeros(size)))
        root.add('C1', ExecComp('y = x * 2.', y=np.zeros(size//2), x=np.zeros(size//2)))
        root.add('C2', ExecComp('y = x * 3.', y=np.zeros(size//2), x=np.zeros(size//2)))

        root.connect('P1.x', "C1.x", src_indices=list(range(size//2)))
        root.connect('P1.x', "C2.x", src_indices=list(range(size//2, size)))

        prob = Problem(root)
        prob.setup(check=False)

        root.P1.unknowns['x'][0:size//2] += 1.0
        root.P1.unknowns['x'][size//2:size] -= 1.0

        prob.run()

        assert_rel_error(self, root.C1.params['x'], np.ones(size//2), 0.0001)
        assert_rel_error(self, root.C2.params['x'], -np.ones(size//2), 0.0001)
Esempio n. 27
0
    def __init__(self):
        super(FanOutGrouped, self).__init__()

        sub = self.add('sub', ParallelGroup())
        pgroup = sub.add('pgroup', Group())
        pgroup.add('p', ParamComp('x', 1.0))
        pgroup.add('comp1', ExecComp(['y=3.0*x']))
        sub.add('comp2', ExecComp(['y=-2.0*x']))
        sub.add('comp3', ExecComp(['y=5.0*x']))

        self.add('c2', ExecComp(['y=x']))
        self.add('c3', ExecComp(['y=x']))
        self.connect('sub.comp2.y', 'c2.x')
        self.connect('sub.comp3.y', 'c3.x')

        self.connect("sub.pgroup.comp1.y", "sub.comp2.x")
        self.connect("sub.pgroup.comp1.y", "sub.comp3.x")
        self.connect("sub.pgroup.p.x", "sub.pgroup.comp1.x")
Esempio n. 28
0
    def test_complex_step2(self):
        prob = Problem(Group())
        comp = prob.root.add('comp', ExecComp('y=x*x + x*2.0'))
        prob.root.add('p1', ParamComp('x', 2.0))
        prob.root.connect('p1.x', 'comp.x')

        comp.fd_options['force_fd'] = False

        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['p1.x'], ['comp.y'],
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['comp.y']['p1.x'], np.array([6.0]), 0.00001)

        J = prob.calc_gradient(['p1.x'], ['comp.y'],
                               mode='rev',
                               return_format='dict')
        assert_rel_error(self, J['comp.y']['p1.x'], np.array([6.0]), 0.00001)
    def test_overrides(self):
        class OverrideComp(Component):
            def __init__(self):
                super(OverrideComp, self).__init__()

                # Params
                self.add_param('x', 3.0)

                # Unknowns
                self.add_output('y', 5.5)

            def solve_nonlinear(self, params, unknowns, resids):
                """ Doesn't do much. """
                unknowns['y'] = 7.0 * params['x']

            def apply_linear(self, params, unknowns, dparams, dunknowns,
                             dresids, mode):
                """Never Call."""
                raise RuntimeError(
                    "This should have been overridden by force_fd.")

            def jacobian(self, params, unknowns, resids):
                """Never Call."""
                raise RuntimeError(
                    "This should have been overridden by force_fd.")

        prob = Problem()
        prob.root = Group()
        comp = prob.root.add('comp', OverrideComp())
        prob.root.add('p1', ParamComp('x', 2.0))
        prob.root.connect('p1.x', 'comp.x')

        comp.fd_options['force_fd'] = True

        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['p1.x'], ['comp.y'],
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['comp.y']['p1.x'][0][0], 7.0, 1e-6)
Esempio n. 30
0
    def test_warm_start(self):
        # create metamodel with warm_restart = True
        meta = MetaModel()
        meta.add_param('x1', 0.)
        meta.add_param('x2', 0.)
        meta.add_output('y1', 0.)
        meta.add_output('y2', 0.)
        meta.default_surrogate = ResponseSurface()
        meta.warm_restart = True

        # add to problem
        prob = Problem(Group())
        prob.root.add('meta', meta)
        prob.setup(check=False)

        # provide initial training data
        prob['meta.train:x1'] = [1.0, 3.0]
        prob['meta.train:x2'] = [1.0, 4.0]
        prob['meta.train:y1'] = [3.0, 1.0]
        prob['meta.train:y2'] = [1.0, 7.0]

        # run against a data point and check result
        prob['meta.x1'] = 2.0
        prob['meta.x2'] = 3.0
        prob.run()

        assert_rel_error(self, prob['meta.y1'], 1.9085, .001)
        assert_rel_error(self, prob['meta.y2'], 3.9203, .001)

        # Add 3rd training point, moves the estimate for that point
        # back to where it should be.
        prob['meta.train:x1'] = [2.0]
        prob['meta.train:x2'] = [3.0]
        prob['meta.train:y1'] = [2.0]
        prob['meta.train:y2'] = [4.0]

        meta.train = True  # currently need to tell meta to re-train

        prob.run()
        assert_rel_error(self, prob['meta.y1'], 2.0, .00001)
        assert_rel_error(self, prob['meta.y2'], 4.0, .00001)
Esempio n. 31
0
    def test_simple_jac(self):
        group = Group()
        group.add('x_param', ParamComp('x', 1.0), promotes=['*'])
        group.add('mycomp', ExecComp(['y=2.0*x']), promotes=['x', 'y'])

        prob = Problem()
        prob.root = group
        prob.root.ln_solver = ExplicitSolver()
        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['x'], ['y'], mode='fwd', return_format='dict')
        assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)

        J = prob.calc_gradient(['x'], ['y'], mode='rev', return_format='dict')
        assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)
    def test_no_derivatives(self):

        prob = Problem()
        prob.root = Group()
        comp = prob.root.add('comp', ExecComp('y=x*2.0'))
        prob.root.add('p1', ParamComp('x', 2.0))
        prob.root.connect('p1.x', 'comp.x')

        comp.fd_options['force_fd'] = True

        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['p1.x'], ['comp.y'],
                               mode='fwd',
                               return_format='dict')
        assert_rel_error(self, J['comp.y']['p1.x'][0][0], 2.0, 1e-6)

        J = prob.calc_gradient(['p1.x'], ['comp.y'],
                               mode='rev',
                               return_format='dict')
        assert_rel_error(self, J['comp.y']['p1.x'][0][0], 2.0, 1e-6)
Esempio n. 33
0
    def test_simple_in_group_matvec(self):
        group = Group()
        sub = group.add('sub', Group(), promotes=['x', 'y'])
        group.add('x_param', ParamComp('x', 1.0), promotes=['*'])
        sub.add('mycomp', SimpleCompDerivMatVec(), promotes=['x', 'y'])

        prob = Problem(impl=impl)
        prob.root = group
        prob.root.ln_solver = PetscKSP()
        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['x'], ['y'], mode='fwd', return_format='dict')
        assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)

        J = prob.calc_gradient(['x'], ['y'], mode='rev', return_format='dict')
        assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)
Esempio n. 34
0
    def test_sin_metamodel(self):

        # create a MetaModel for Sin and add it to a Problem
        sin_mm = MetaModel()
        sin_mm.add_param('x', 0.)
        sin_mm.add_output('f_x', 0.)

        prob = Problem(Group())
        prob.root.add('sin_mm', sin_mm)

        # check that missing surrogate is detected in check_setup
        stream = cStringIO()
        prob.setup(out_stream=stream)
        msg = ("No default surrogate model is defined and the "
               "following outputs do not have a surrogate model:\n"
               "['f_x']\n"
               "Either specify a default_surrogate, or specify a "
               "surrogate model for all outputs.")
        self.assertTrue(msg in stream.getvalue())

        # check that output with no specified surrogate gets the default
        sin_mm.default_surrogate = FloatKrigingSurrogate()
        prob.setup(check=False)
        surrogate = prob.root.unknowns.metadata('sin_mm.f_x').get('surrogate')
        self.assertTrue(isinstance(surrogate, FloatKrigingSurrogate),
                        'sin_mm.f_x should get the default surrogate')

        # train the surrogate and check predicted value
        prob['sin_mm.train:x'] = np.linspace(0, 10, 200)
        prob['sin_mm.train:f_x'] = .5 * np.sin(prob['sin_mm.train:x'])

        prob['sin_mm.x'] = 2.22

        prob.run()

        self.assertAlmostEqual(prob['sin_mm.f_x'],
                               .5 * np.sin(prob['sin_mm.x']),
                               places=5)
    def test_fd_options_step_size(self):

        prob = Problem()
        prob.root = Group()
        comp = prob.root.add('comp', Paraboloid())
        prob.root.add('p1', ParamComp([('x', 15.0), ('y', 15.0)]))
        prob.root.connect('p1.x', 'comp.x')
        prob.root.connect('p1.y', 'comp.y')

        comp.fd_options['force_fd'] = True

        prob.setup(check=False)
        prob.run()

        J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
        assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-6)

        # Make sure step_size is used
        # Derivative should be way high with this.
        comp.fd_options['step_size'] = 1e5

        J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
        self.assertGreater(J['comp.f_xy']['p1.x'][0][0], 1000.0)
Esempio n. 36
0
    def test_array_outputs(self):
        meta = MetaModel()
        meta.add_param('x', np.zeros((2, 2)))
        meta.add_output('y', np.zeros(2, ))
        meta.default_surrogate = FloatKrigingSurrogate()

        prob = Problem(Group())
        prob.root.add('meta', meta)
        prob.setup(check=False)

        prob['meta.train:x'] = [[[1.0, 1.0], [1.0, 1.0]],
                                [[2.0, 1.0], [1.0, 1.0]],
                                [[1.0, 2.0], [1.0, 1.0]],
                                [[1.0, 1.0], [2.0, 1.0]],
                                [[1.0, 1.0], [1.0, 2.0]]]

        prob['meta.train:y'] = [[3.0, 1.0], [2.0, 4.0], [1.0, 7.0],
                                [6.0, -3.0], [-2.0, 3.0]]

        prob['meta.x'] = [[1.0, 2.0], [1.0, 1.0]]
        prob.run()

        assert_rel_error(self, prob['meta.y'], np.array([1.0, 7.0]), .00001)
Esempio n. 37
0
    def test_vector_inputs(self):

        meta = MetaModel()
        meta.add_param('x', np.zeros(4))
        meta.add_output('y1', 0.)
        meta.add_output('y2', 0.)
        meta.default_surrogate = FloatKrigingSurrogate()

        prob = Problem(Group())
        prob.root.add('meta', meta)
        prob.setup(check=False)

        prob['meta.train:x'] = [[1.0, 1.0, 1.0, 1.0], [2.0, 1.0, 1.0, 1.0],
                                [1.0, 2.0, 1.0, 1.0], [1.0, 1.0, 2.0, 1.0],
                                [1.0, 1.0, 1.0, 2.0]]
        prob['meta.train:y1'] = [3.0, 2.0, 1.0, 6.0, -2.0]
        prob['meta.train:y2'] = [1.0, 4.0, 7.0, -3.0, 3.0]

        prob['meta.x'] = [1.0, 2.0, 1.0, 1.0]
        prob.run()

        assert_rel_error(self, prob['meta.y1'], 1.0, .00001)
        assert_rel_error(self, prob['meta.y2'], 7.0, .00001)
Esempio n. 38
0
    def test_linear_system(self):
        root = Group()

        root.add('lin', LinearSystem(3))

        x = np.array([1, 2, -3])
        A = np.array([[ 5.0, -3.0, 2.0], [1.0, 7.0, -4.0], [1.0, 0.0, 8.0]])
        b = A.dot(x)

        root.add('p1', IndepVarComp('A', A))
        root.add('p2', IndepVarComp('b', b))
        root.connect('p1.A', 'lin.A')
        root.connect('p2.b', 'lin.b')

        prob = Problem(root)
        prob.setup(check=False)
        prob.run()

        # Make sure it gets the right answer
        assert_rel_error(self, prob['lin.x'], x, .0001)
        assert_rel_error(self, np.linalg.norm(prob.root.resids.vec), 0.0, 1e-10)

        # Compare against calculated derivs
        Ainv = np.linalg.inv(A)
        dx_dA = np.outer(Ainv, -x).reshape(3, 9)
        dx_db = Ainv

        J = prob.calc_gradient(['p1.A', 'p2.b'], ['lin.x'], mode='fwd', return_format='dict')
        assert_rel_error(self, J['lin.x']['p1.A'], dx_dA, .0001)
        assert_rel_error(self, J['lin.x']['p2.b'], dx_db, .0001)

        J = prob.calc_gradient(['p1.A', 'p2.b'], ['lin.x'], mode='rev', return_format='dict')
        assert_rel_error(self, J['lin.x']['p1.A'], dx_dA, .0001)
        assert_rel_error(self, J['lin.x']['p2.b'], dx_db, .0001)

        J = prob.calc_gradient(['p1.A', 'p2.b'], ['lin.x'], mode='fd', return_format='dict')
        assert_rel_error(self, J['lin.x']['p1.A'], dx_dA, .0001)
        assert_rel_error(self, J['lin.x']['p2.b'], dx_db, .0001)
Esempio n. 39
0
    def test_indices_connect_error(self):
        root = Group()

        P = root.add('P', IndepVarComp('x', np.array([1., 2., 3., 4., 5.])))
        G = root.add('G', Group())
        C = root.add('C', SimpleComp())

        A  = G.add('A', SimpleArrayComp())

        root.connect('P.x', 'G.A.x', src_indices=[0])
        root.connect('P.x', 'C.x', src_indices=[2,])

        expected_error_message = py3fix("Size 1 of the indexed sub-part of "
                                        "source 'P.x' must match the size "
                                        "'2' of the target 'G.A.x'")
        prob = Problem(root)
        with self.assertRaises(ConnectError) as cm:
            prob.setup(check=False)

        self.assertEqual(str(cm.exception), expected_error_message)

        # now try the same thing with promoted var
        root = Group()

        P = root.add('P', IndepVarComp('x', np.array([1., 2., 3., 4., 5.])))
        G = root.add('G', Group())
        C = root.add('C', SimpleComp())

        A  = G.add('A', SimpleArrayComp(), promotes=['x', 'y'])

        root.connect('P.x', 'G.x', src_indices=[0,1,2])
        root.connect('P.x', 'C.x', src_indices=[2,])

        expected_error_message = py3fix("Size 3 of the indexed sub-part of "
                                        "source 'P.x' must match the size "
                                        "'2' of the target 'G.x'")
        prob = Problem(root)
        with self.assertRaises(ConnectError) as cm:
            prob.setup(check=False)

        self.assertEqual(str(cm.exception), expected_error_message)
Esempio n. 40
0
        self.connect("nozzle_air.Fl_O:tot:T","tm.nozzle_air_Tt")
        self.connect("nozzle_air.Fl_O:tot:Cp","tm.nozzle_air_Cp")
        self.connect("nozzle_air.Fl_O:stat:W","tm.nozzle_air_W")

        self.connect("bearing_air.Fl_O:tot:T","tm.bearing_air_Tt")
        self.connect("bearing_air.Fl_O:tot:Cp","tm.bearing_air_Cp")
        self.connect("bearing_air.Fl_O:stat:W","tm.bearing_air_W")

        self.connect('tm.ss_temp_residual','tmp_balance.ss_temp_residual')
        self.connect('tmp_balance.temp_boundary','tm.temp_boundary')


#run stand-alone component
if __name__ == "__main__":

    root = Group()
    root.add('fs', FlowStuff())
    
    prob = Problem(root)

    prob.root.nl_solver = Newton()
    prob.root.nl_solver.options['atol'] = 1e-5
    prob.root.nl_solver.options['iprint'] = 1
    prob.root.nl_solver.options['rtol'] = 1e-5
    prob.root.nl_solver.options['maxiter'] = 50

    params = (
        ('P', 0.3, {'units':'psi'}),
        ('T', 1500.0, {'units':'degR'}),
        ('W', 1.0, {'units':'lbm/s'})
        )
Esempio n. 41
0
    def test_subarray_to_promoted_var(self):
        root = Group()

        P = root.add('P', ParamComp('x', np.array([1., 2., 3.])))
        G = root.add('G', Group())
        C = root.add('C', SimpleComp())

        A = G.add('A', SimpleArrayComp()) # , promotes=['x', 'y'])

        root.connect('P.x', 'G.A.x', src_indices=[0,1])
        root.connect('P.x', 'C.x', src_indices=[2,])

        prob = Problem(root)
        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, root.G.A.params['x'], np.array([1., 2.]), 0.0001)
        self.assertAlmostEqual(root.C.params['x'], 3.)

        # no try the same thing with promoted var
        root = Group()

        P = root.add('P', ParamComp('x', np.array([1., 2., 3.])))
        G = root.add('G', Group())
        C = root.add('C', SimpleComp())

        A = G.add('A', SimpleArrayComp(), promotes=['x', 'y'])

        root.connect('P.x', 'G.x', src_indices=[0,1])
        root.connect('P.x', 'C.x', src_indices=[2,])

        prob = Problem(root)
        prob.setup(check=False)
        prob.run()

        assert_rel_error(self, root.G.A.params['x'], np.array([1., 2.]), 0.0001)
        self.assertAlmostEqual(root.C.params['x'], 3.)