Esempio n. 1
0
    def test_feature_numpyvec_setup(self):
        from openmdao.api import Problem, Group, IndepVarComp
        from openmdao.test_suite.components.paraboloid import Paraboloid

        prob = Problem()
        model = prob.model = Group()
        model.add_subsystem('p1', IndepVarComp('x', 0.0), promotes=['x'])
        model.add_subsystem('p2', IndepVarComp('y', 0.0), promotes=['y'])
        model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy'])

        prob.setup()

        prob['x'] = 2.
        prob['y'] = 10.
        prob.run_model()
        assert_rel_error(self, prob['f_xy'], 214.0, 1e-6)

        prob['x'] = 0.
        prob['y'] = 0.
        prob.run_model()
        assert_rel_error(self, prob['f_xy'], 22.0, 1e-6)

        # skip the setup error checking
        prob.setup(check=False)
        prob['x'] = 4
        prob['y'] = 8.

        prob.run_model()
        assert_rel_error(self, prob['f_xy'], 174.0, 1e-6)
Esempio n. 2
0
    def test_feature_boundscheck_wall(self):
        top = Problem()
        top.model = Group()
        top.model.add_subsystem('px', IndepVarComp('x', np.ones((3, 1))))
        top.model.add_subsystem('comp', ImplCompTwoStatesArrays())
        top.model.connect('px.x', 'comp.x')

        top.model.nonlinear_solver = NewtonSolver()
        top.model.nonlinear_solver.options['maxiter'] = 10
        top.model.linear_solver = ScipyIterativeSolver()

        ls = top.model.nonlinear_solver.linesearch = BoundsEnforceLS()
        ls.options['bound_enforcement'] = 'wall'

        top.setup(check=False)

        # Test upper bounds: should go to the upper bound and stall
        top['px.x'] = 0.5
        top['comp.y'] = 0.
        top['comp.z'] = 2.4
        top.run_model()

        assert_rel_error(self, top['comp.z'][0], [2.6], 1e-8)
        assert_rel_error(self, top['comp.z'][1], [2.5], 1e-8)
        assert_rel_error(self, top['comp.z'][2], [2.65], 1e-8)
Esempio n. 3
0
    def test_relevancy_for_newton(self):
        class TestImplCompSimple(ImplicitComponent):
            def setup(self):
                self.add_input('a', val=1.)
                self.add_output('x', val=0.)

                self.declare_partials(of='*', wrt='*')

            def apply_nonlinear(self, inputs, outputs, residuals):
                residuals['x'] = np.exp(outputs['x']) - \
                    inputs['a']**2 * outputs['x']**2

            def linearize(self, inputs, outputs, jacobian):
                jacobian['x', 'x'] = np.exp(outputs['x']) - \
                    2 * inputs['a']**2 * outputs['x']
                jacobian['x', 'a'] = -2 * inputs['a'] * outputs['x']**2

        prob = Problem()
        prob.model = model = Group()

        model.add_subsystem('p1', IndepVarComp('x', 3.0))
        model.add_subsystem('icomp', TestImplCompSimple())
        model.add_subsystem('ecomp', ExecComp('y = x*p', p=1.0))

        model.connect('p1.x', 'ecomp.x')
        model.connect('icomp.x', 'ecomp.p')

        model.add_design_var('p1.x', 3.0)
        model.add_objective('ecomp.y')

        model.nonlinear_solver = NewtonSolver()
        model.linear_solver = ScipyIterativeSolver()

        prob.setup(check=False)

        prob.run_model()

        J = prob.compute_totals()
        assert_rel_error(self, J['ecomp.y', 'p1.x'][0][0], -0.703467422498,
                         1e-6)
Esempio n. 4
0
    def test_circuit_plain_newton_many_iter(self):

        from openmdao.api import Problem, IndepVarComp

        from openmdao.test_suite.test_examples.test_circuit_analysis import Circuit

        p = Problem()
        model = p.model

        model.add_subsystem('ground', IndepVarComp('V', 0., units='V'))
        model.add_subsystem('source', IndepVarComp('I', 0.1, units='A'))
        model.add_subsystem('circuit', Circuit())

        model.connect('source.I', 'circuit.I_in')
        model.connect('ground.V', 'circuit.Vg')

        p.setup()

        # you can change the NewtonSolver settings in circuit after setup is called
        newton = p.model.circuit.nonlinear_solver
        newton.options['maxiter'] = 50

        # set some initial guesses
        p['circuit.n1.V'] = 10.
        p['circuit.n2.V'] = 1e-3

        p.run_model()

        assert_rel_error(self, p['circuit.n1.V'], 9.98744708, 1e-5)
        assert_rel_error(self, p['circuit.n2.V'], 8.73215484, 1e-5)
        #'Sanity check: shoudl sum to .1 Amps
        assert_rel_error(self, p['circuit.R1.I'] + p['circuit.D1.I'],
                         0.09987447, 1e-6)
Esempio n. 5
0
    def test_set_checks_shape(self):

        model = Group()

        indep = model.add_subsystem('indep', IndepVarComp())
        indep.add_output('num')
        indep.add_output('arr', shape=(10, 1))

        prob = Problem(model)
        prob.setup()

        msg = "Incompatible shape for '.*': Expected (.*) but got (.*)"

        # check valid scalar value
        new_val = -10.
        prob['indep.num'] = new_val
        assert_rel_error(self, prob['indep.num'], new_val, 1e-10)

        # check bad scalar value
        bad_val = -10 * np.ones((10))
        prob['indep.num'] = bad_val
        with assertRaisesRegex(self, ValueError, msg):
            prob.final_setup()
        prob._initial_condition_cache = {}

        # check assign scalar to array
        arr_val = new_val * np.ones((10, 1))
        prob['indep.arr'] = new_val
        prob.final_setup()
        assert_rel_error(self, prob['indep.arr'], arr_val, 1e-10)

        # check valid array value
        new_val = -10 * np.ones((10, 1))
        prob['indep.arr'] = new_val
        assert_rel_error(self, prob['indep.arr'], new_val, 1e-10)

        # check bad array value
        bad_val = -10 * np.ones((10))
        with assertRaisesRegex(self, ValueError, msg):
            prob['indep.arr'] = bad_val

        # check valid list value
        new_val = new_val.tolist()
        prob['indep.arr'] = new_val
        assert_rel_error(self, prob['indep.arr'], new_val, 1e-10)

        # check bad list value
        bad_val = bad_val.tolist()
        with assertRaisesRegex(self, ValueError, msg):
            prob['indep.arr'] = bad_val
Esempio n. 6
0
    def test_nolinesearch(self):
        top = self.top

        # Run without a line search at x=2.0
        top['px.x'] = 2.0
        top.run_model()
        assert_rel_error(self, top['comp.y'], 4.666666, 1e-4)
        assert_rel_error(self, top['comp.z'], 1.333333, 1e-4)

        # Run without a line search at x=0.5
        top['px.x'] = 0.5
        top.run_model()
        assert_rel_error(self, top['comp.y'], 5.833333, 1e-4)
        assert_rel_error(self, top['comp.z'], 2.666666, 1e-4)
Esempio n. 7
0
    def test_feature_print_bound_enforce(self):
        top = Problem()
        top.model = Group()
        top.model.add_subsystem('px', IndepVarComp('x', np.ones((3, 1))))
        top.model.add_subsystem('comp', ImplCompTwoStatesArrays())
        top.model.connect('px.x', 'comp.x')

        newt = top.model.nonlinear_solver = NewtonSolver()
        top.model.nonlinear_solver.options['maxiter'] = 2
        top.model.linear_solver = ScipyIterativeSolver()

        ls = newt.linesearch = BoundsEnforceLS(bound_enforcement='vector')
        ls.options['print_bound_enforce'] = True

        top.set_solver_print(level=2)
        top.setup()

        # Test lower bounds: should go to the lower bound and stall
        top['px.x'] = 2.0
        top['comp.y'] = 0.
        top['comp.z'] = 1.6
        top.run_model()

        assert_rel_error(self, top['comp.z'][0], [1.5], 1e-8)
        assert_rel_error(self, top['comp.z'][1], [1.5], 1e-8)
        assert_rel_error(self, top['comp.z'][2], [1.5], 1e-8)
Esempio n. 8
0
    def test_converge_diverge_groups(self):
        # Test derivatives for converge-diverge-groups topology.
        prob = Problem()
        prob.model = ConvergeDivergeGroups()

        prob.model.linear_solver = LinearRunOnce()
        prob.set_solver_print(level=0)

        g1 = prob.model.get_subsystem('g1')
        g2 = g1.get_subsystem('g2')
        g3 = prob.model.get_subsystem('g3')
        g1.linear_solver = LinearRunOnce()
        g2.linear_solver = LinearRunOnce()
        g3.linear_solver = LinearRunOnce()

        prob.setup(check=False, mode='fwd')
        prob.run_model()

        wrt = ['iv.x']
        of = ['c7.y1']

        # Make sure value is fine.
        assert_rel_error(self, prob['c7.y1'], -102.7, 1e-6)

        J = prob.compute_totals(of=of, wrt=wrt, return_format='flat_dict')
        assert_rel_error(self, J['c7.y1', 'iv.x'][0][0], -40.75, 1e-6)

        prob.setup(check=False, mode='rev')
        prob.run_model()

        J = prob.compute_totals(of=of, wrt=wrt, return_format='flat_dict')
        assert_rel_error(self, J['c7.y1', 'iv.x'][0][0], -40.75, 1e-6)
Esempio n. 9
0
    def test_basic_cs(self):
        class CompOne(ExplicitComponent):
            def setup(self):
                self.add_input('x', val=0.0)
                self.add_output('y', val=np.zeros(25))
                self._exec_count = 0

            def compute(self, inputs, outputs):
                x = inputs['x']
                outputs['y'] = np.arange(25) * x
                self._exec_count += 1

        class CompTwo(ExplicitComponent):
            def setup(self):
                self.add_input('y', val=np.zeros(25))
                self.add_output('z', val=0.0)
                self._exec_count = 0

            def compute(self, inputs, outputs):
                y = inputs['y']
                outputs['z'] = np.sum(y)
                self._exec_count += 1

        prob = Problem()
        model = prob.model = Group()
        model.add_subsystem('p1', IndepVarComp('x', 0.0), promotes=['x'])
        model.add_subsystem('comp1', CompOne(), promotes=['x', 'y'])
        comp2 = model.add_subsystem('comp2', CompTwo(), promotes=['y', 'z'])

        model.linear_solver = ScipyIterativeSolver()
        model.approx_totals(method='cs')

        prob.setup()
        prob.run_model()

        of = ['z']
        wrt = ['x']
        derivs = prob.compute_totals(of=of, wrt=wrt)

        assert_rel_error(self, derivs['z', 'x'], [[300.0]], 1e-6)
Esempio n. 10
0
    def test_tldr(self):
        from openmdao.api import Problem, ScipyOptimizer, ExecComp, IndepVarComp

        # build the model
        prob = Problem()
        indeps = prob.model.add_subsystem('indeps', IndepVarComp())
        indeps.add_output('x', 3.0)
        indeps.add_output('y', -4.0)

        prob.model.add_subsystem('paraboloid',
                                 ExecComp('f = (x-3)**2 + x*y + (y+4)**2 - 3'))

        prob.model.connect('indeps.x', 'paraboloid.x')
        prob.model.connect('indeps.y', 'paraboloid.y')

        # setup the optimization
        prob.driver = ScipyOptimizer()
        prob.driver.options['optimizer'] = 'SLSQP'

        prob.model.add_design_var('indeps.x', lower=-50, upper=50)
        prob.model.add_design_var('indeps.y', lower=-50, upper=50)
        prob.model.add_objective('paraboloid.f')

        prob.setup()
        prob.run_driver()

        # minimum value
        assert_rel_error(self, prob['paraboloid.f'], -27.33333, 1e-6)

        # location of the minimum
        assert_rel_error(self, prob['indeps.x'], 6.6667, 1e-4)
        assert_rel_error(self, prob['indeps.y'], -7.33333, 1e-4)
Esempio n. 11
0
    def test_connect_units_with_nounits(self):
        prob = Problem(Group())
        prob.model.add_subsystem('px1', IndepVarComp('x1', 100.0))
        prob.model.add_subsystem('src', ExecComp('x2 = 2 * x1'))
        prob.model.add_subsystem('tgt',
                                 ExecComp('y = 3 * x', x={'units': 'degC'}))

        prob.model.connect('px1.x1', 'src.x1')
        prob.model.connect('src.x2', 'tgt.x')
        prob.set_solver_print(level=0)

        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
            prob.setup(check=False)

            self.assertEqual(
                str(w[-1].message), "Input 'tgt.x' with units of 'degC' is "
                "connected to output 'src.x2' which has no units.")

        prob.run_model()

        assert_rel_error(self, prob['tgt.y'], 600.)
Esempio n. 12
0
    def test_vector_inputs(self):
        mm = MetaModel()
        mm.add_input('x', np.zeros(4))
        mm.add_output('y1', 0.)
        mm.add_output('y2', 0.)
        mm.default_surrogate = FloatKrigingSurrogate()

        prob = Problem()
        prob.model.add_subsystem('mm', mm)
        prob.setup(check=False)

        mm.metadata['train:x'] = [[1.0, 1.0, 1.0, 1.0], [2.0, 1.0, 1.0, 1.0],
                                  [1.0, 2.0, 1.0, 1.0], [1.0, 1.0, 2.0, 1.0],
                                  [1.0, 1.0, 1.0, 2.0]]
        mm.metadata['train:y1'] = [3.0, 2.0, 1.0, 6.0, -2.0]
        mm.metadata['train:y2'] = [1.0, 4.0, 7.0, -3.0, 3.0]

        prob['mm.x'] = [1.0, 2.0, 1.0, 1.0]
        prob.run_model()

        assert_rel_error(self, prob['mm.y1'], 1.0, .00001)
        assert_rel_error(self, prob['mm.y2'], 7.0, .00001)
Esempio n. 13
0
    def test_speed(self):
        comp = IndepVarComp()
        comp.add_output('distance', 1., units='km')
        comp.add_output('time', 1., units='h')

        group = Group()
        group.add_subsystem('c1', comp)
        group.add_subsystem('c2', SpeedComputationWithUnits())
        group.connect('c1.distance', 'c2.distance')
        group.connect('c1.time', 'c2.time')

        prob = Problem(model=group)
        prob.setup(check=False)
        prob.set_solver_print(level=0)

        prob.run_model()
        assert_rel_error(self, prob['c1.distance'], 1.0)  # units: km
        assert_rel_error(self, prob['c2.distance'], 1000.0)  # units: m
        assert_rel_error(self, prob['c1.time'], 1.0)  # units: h
        assert_rel_error(self, prob['c2.time'], 3600.0)  # units: s
        assert_rel_error(self, prob['c2.speed'],
                         1.0)  # units: km/h (i.e., kph)
Esempio n. 14
0
    def test_scaled_derivs(self):

        prob = Problem()
        prob.model = model = SellarDerivatives()

        model.add_design_var('z', ref=2.0, ref0=0.0)
        model.add_objective('obj', ref=1.0, ref0=0.0)
        model.add_constraint('con1', lower=0, ref=2.0, ref0=0.0)
        prob.set_solver_print(level=0)

        prob.setup(check=False)
        prob.run_model()

        base = prob.compute_totals(of=['obj', 'con1'], wrt=['z'])
        derivs = prob.driver._compute_totals(
            of=['obj_cmp.obj', 'con_cmp1.con1'],
            wrt=['pz.z'],
            return_format='dict')
        assert_rel_error(self, base[('con1', 'z')][0],
                         derivs['con_cmp1.con1']['pz.z'][0], 1e-5)
        assert_rel_error(self, base[('obj', 'z')][0] * 2.0,
                         derivs['obj_cmp.obj']['pz.z'][0], 1e-5)
Esempio n. 15
0
    def test_4_subs_with_mins_serial_plus_2_par(self):
        p = Problem()
        model = p.model
        model.add_subsystem('indep', IndepVarComp('x', 1.0))
        par1 = model.add_subsystem('par1', ParallelGroup())
        par2 = model.add_subsystem('par2', ParallelGroup())

        par1.add_subsystem("C0", ExecComp("y=2.0*x"), min_procs=2)
        par1.add_subsystem("C1", ExecComp("y=2.0*x"), min_procs=1)
        par2.add_subsystem("C2", ExecComp("y=2.0*x"), min_procs=1)
        par2.add_subsystem("C3", ExecComp("y=2.0*x"), min_procs=2)

        s_sum = '+'.join(['x%d' % i for i in range(4)])
        model.add_subsystem('objective', ExecComp("y=%s" % s_sum))

        model.connect('indep.x', ['par1.C0.x', 'par1.C1.x', 'par2.C2.x', 'par2.C3.x'])
        for i in range(2):
            model.connect('par1.C%d.y' % i, 'objective.x%d' % i)
        for i in range(2,4):
            model.connect('par2.C%d.y' % i, 'objective.x%d' % i)

        model.add_design_var('indep.x')
        model.add_objective('objective.y')

        p.setup(vector_class=vector_class, check=False)
        p.final_setup()

        all_inds = _get_which_procs(p.model)
        self.assertEqual(all_inds, [[0, 1, 2, 3], [0, 1, 2, 3], [0, 1, 2, 3]])
        all_inds = _get_which_procs(p.model.par1)
        self.assertEqual(all_inds, [[0], [0], [1]])
        all_inds = _get_which_procs(p.model.par2)
        self.assertEqual(all_inds, [[0], [1], [1]])

        p.run_model()
        assert_rel_error(self, p['objective.y'], 8.0)

        J = p.compute_totals(['objective.y'], ['indep.x'], return_format='dict')
        assert_rel_error(self, J['objective.y']['indep.x'][0][0], 8.0, 1e-6)
Esempio n. 16
0
    def test_promote_src_indices_nonflat_to_scalars(self):
        class MyComp(ExplicitComponent):
            def setup(self):
                self.add_input('x', 1.0, src_indices=[(3, 1)], shape=(1, ))
                self.add_output('y', 1.0)

            def compute(self, inputs, outputs):
                outputs['y'] = inputs['x'] * 2.0

        p = Problem()

        p.model.add_subsystem('indep',
                              IndepVarComp('x',
                                           np.arange(12).reshape((4, 3))),
                              promotes_outputs=['x'])
        p.model.add_subsystem('C1', MyComp(), promotes_inputs=['x'])

        p.set_solver_print(level=0)
        p.setup()
        p.run_model()
        assert_rel_error(self, p['C1.x'], 10.)
        assert_rel_error(self, p['C1.y'], 20.)
Esempio n. 17
0
    def test_training_gradient(self):
        model = Group()
        ivc = IndepVarComp()

        mapdata = SampleMap()

        params = mapdata.param_data
        outs = mapdata.output_data

        ivc.add_output('x', np.array([-0.3, 0.7, 1.2]))
        ivc.add_output('y', np.array([0.14, 0.313, 1.41]))
        ivc.add_output('z', np.array([-2.11, -1.2, 2.01]))

        ivc.add_output('f_train', outs[0]['values'])
        ivc.add_output('g_train', outs[1]['values'])

        comp = MetaModelStructured(training_data_gradients=True,
                                   method='cubic',
                                   num_nodes=3)
        for param in params:
            comp.add_input(param['name'], param['default'], param['values'])

        for out in outs:
            comp.add_output(out['name'], out['default'], out['values'])

        model.add_subsystem('ivc', ivc, promotes=["*"])
        model.add_subsystem('comp', comp, promotes=["*"])

        prob = Problem(model)
        prob.setup()
        prob.run_model()

        val0 = np.array([50.26787317, 49.76106232, 19.66117913])
        val1 = np.array([-32.62094041, -31.67449135, -27.46959668])

        tol = 1e-5
        assert_rel_error(self, prob['f'], val0, tol)
        assert_rel_error(self, prob['g'], val1, tol)
        self.run_and_check_derivs(prob)
Esempio n. 18
0
    def test_snopt_maxit(self):

        prob = Problem()
        model = prob.model = SellarDerivativesGrouped()

        prob.driver = pyOptSparseDriver()
        prob.driver.options['optimizer'] = "SNOPT"

        prob.driver.opt_settings['Major iterations limit'] = 4

        model.add_design_var('z', lower=np.array([-10.0, 0.0]), upper=np.array([10.0, 10.0]))
        model.add_design_var('x', lower=0.0, upper=10.0)
        model.add_objective('obj')
        model.add_constraint('con1', upper=0.0)
        model.add_constraint('con2', upper=0.0)

        prob.set_solver_print(level=0)

        prob.setup(check=False, mode='rev')
        prob.run_driver()

        assert_rel_error(self, prob['z'][0], 1.9780247, 1e-3)
Esempio n. 19
0
    def test_promote_src_indices_nonflat(self):
        import numpy as np

        from openmdao.api import ExplicitComponent, Problem, IndepVarComp

        class MyComp(ExplicitComponent):
            def setup(self):
                # We want to pull the following 4 values out of the source:
                # [(0,0), (3,1), (2,1), (1,1)].
                # Because our input is also non-flat we arrange the
                # source index tuples into an array having the same shape
                # as our input.  If we didn't set flat_src_indices to False,
                # we could specify src_indices as a 1D array of indices into
                # the flattened source.
                self.add_input('x',
                               np.ones((2, 2)),
                               src_indices=[[(0, 0), (3, 1)], [(2, 1),
                                                               (1, 1)]],
                               flat_src_indices=False)
                self.add_output('y', 1.0)

            def compute(self, inputs, outputs):
                outputs['y'] = np.sum(inputs['x'])

        p = Problem()

        # by promoting the following output and inputs to 'x', they will
        # be automatically connected
        p.model.add_subsystem('indep',
                              IndepVarComp('x',
                                           np.arange(12).reshape((4, 3))),
                              promotes_outputs=['x'])
        p.model.add_subsystem('C1', MyComp(), promotes_inputs=['x'])

        p.set_solver_print(level=0)
        p.setup()
        p.run_model()
        assert_rel_error(self, p['C1.x'], np.array([[0., 10.], [7., 4.]]))
        assert_rel_error(self, p['C1.y'], 21.)
Esempio n. 20
0
    def test_sin_metamodel_rmse(self):
        # create MetaModelUnStructured with Kriging, using the rmse option
        sin_mm = MetaModelUnStructured()
        sin_mm.add_input('x', 0.)
        sin_mm.add_output('f_x', 0.)
        sin_mm.default_surrogate = KrigingSurrogate(eval_rmse=True)

        # add it to a Problem
        prob = Problem()
        prob.model.add_subsystem('sin_mm', sin_mm)
        prob.setup(check=False)

        # train the surrogate and check predicted value
        sin_mm.metadata['train:x'] = np.linspace(0,10,20)
        sin_mm.metadata['train:f_x'] = np.sin(sin_mm.metadata['train:x'])

        prob['sin_mm.x'] = 2.1

        prob.run_model()

        assert_rel_error(self, prob['sin_mm.f_x'], np.sin(2.1), 1e-4) # mean
        self.assertTrue(self, sin_mm._metadata('f_x')['rmse'] < 1e-5) # std deviation
Esempio n. 21
0
    def test_simple_paraboloid_upper_indices(self):

        prob = Problem()
        model = prob.model = Group()

        size = 3
        model.add_subsystem('p1', IndepVarComp('x', np.array([50.0]*size)))
        model.add_subsystem('p2', IndepVarComp('y', np.array([50.0]*size)))
        model.add_subsystem('comp', ExecComp('f_xy = (x-3.0)**2 + x*y + (y+4.0)**2 - 3.0',
                                             x=np.zeros(size), y=np.zeros(size),
                                             f_xy=np.zeros(size)))
        model.add_subsystem('con', ExecComp('c = - x + y',
                                            c=np.zeros(size), x=np.zeros(size),
                                            y=np.zeros(size)))

        model.connect('p1.x', 'comp.x')
        model.connect('p2.y', 'comp.y')
        model.connect('p1.x', 'con.x')
        model.connect('p2.y', 'con.y')

        prob.set_solver_print(level=0)

        prob.driver = pyOptSparseDriver()
        prob.driver.options['optimizer'] = OPTIMIZER
        if OPTIMIZER == 'SLSQP':
            prob.driver.opt_settings['ACC'] = 1e-9
        prob.driver.options['print_results'] = False

        model.add_design_var('p1.x', indices=[1], lower=-50.0, upper=50.0)
        model.add_design_var('p2.y', indices=[1], lower=-50.0, upper=50.0)
        model.add_objective('comp.f_xy', index=1)
        model.add_constraint('con.c', indices=[1], upper=-15.0)

        prob.setup(check=False)
        prob.run_driver()

        # Minimum should be at (7.166667, -7.833334)
        assert_rel_error(self, prob['p1.x'], np.array([50., 7.16667, 50.]), 1e-6)
        assert_rel_error(self, prob['p2.y'], np.array([50., -7.833334, 50.]), 1e-6)
Esempio n. 22
0
    def test_guess_nonlinear_transfer(self):
        # Test that data is transfered to a component before calling guess_nonlinear.

        class ImpWithInitial(ImplicitComponent):

            def setup(self):
                self.add_input('x', 3.0)
                self.add_output('y', 4.0)

            def solve_nonlinear(self, inputs, outputs):
                """ Do nothing. """
                pass

            def apply_nonlinear(self, inputs, outputs, resids):
                """ Do nothing. """
                pass

            def guess_nonlinear(self, inputs, outputs, resids):
                # Passthrough
                outputs['y'] = inputs['x']


        group = Group()

        group.add_subsystem('px', IndepVarComp('x', 77.0))
        group.add_subsystem('comp1', ImpWithInitial())
        group.add_subsystem('comp2', ImpWithInitial())
        group.connect('px.x', 'comp1.x')
        group.connect('comp1.y', 'comp2.x')

        group.nonlinear_solver = NewtonSolver()
        group.nonlinear_solver.options['maxiter'] = 1

        prob = Problem(model=group)
        prob.set_solver_print(level=0)
        prob.setup(check=False)

        prob.run_model()
        assert_rel_error(self, prob['comp2.y'], 77., 1e-5)
Esempio n. 23
0
    def test_feature_basic(self):
        prob = Problem()
        model = prob.model = Group()

        model.add_subsystem('p1', IndepVarComp('x', 50.0), promotes=['*'])
        model.add_subsystem('p2', IndepVarComp('y', 50.0), promotes=['*'])
        model.add_subsystem('comp', Paraboloid(), promotes=['*'])

        prob.driver = ScipyOptimizer()
        prob.driver.options['optimizer'] = 'SLSQP'
        prob.driver.options['tol'] = 1e-9
        prob.driver.options['disp'] = True

        model.add_design_var('x', lower=-50.0, upper=50.0)
        model.add_design_var('y', lower=-50.0, upper=50.0)
        model.add_objective('f_xy')

        prob.setup()
        prob.run_driver()

        assert_rel_error(self, prob['x'], 6.66666667, 1e-6)
        assert_rel_error(self, prob['y'], -7.3333333, 1e-6)
Esempio n. 24
0
    def test_fan_out_serial_sets_rev(self):

        prob = Problem()
        prob.model = FanOutGrouped()
        prob.model.linear_solver = LinearBlockGS()
        prob.model.sub.linear_solver = LinearBlockGS()

        prob.model.add_design_var('iv.x')
        prob.model.add_constraint('c2.y', upper=0.0)
        prob.model.add_constraint('c3.y', upper=0.0)

        prob.setup(vector_class=vector_class, check=False, mode='rev')
        prob.run_driver()

        unknown_list = ['c3.y', 'c2.y']  #['c2.y', 'c3.y']
        indep_list = ['iv.x']

        J = prob.compute_totals(unknown_list,
                                indep_list,
                                return_format='flat_dict')
        assert_rel_error(self, J['c2.y', 'iv.x'][0][0], -6.0, 1e-6)
        assert_rel_error(self, J['c3.y', 'iv.x'][0][0], 15.0, 1e-6)
Esempio n. 25
0
    def test_sparse_jacobian_const(self):
        class SparsePartialComp(ExplicitComponent):
            def setup(self):
                self.add_input('x', shape=(4, ))
                self.add_input('y', shape=(2, ))
                self.add_output('f', shape=(2, ))

                self.declare_partials(of='f',
                                      wrt='x',
                                      rows=[0, 1, 1, 1],
                                      cols=[0, 1, 2, 3],
                                      val=[1., 2., 3., 4.])
                self.declare_partials(of='f',
                                      wrt='y',
                                      val=sp.sparse.eye(2, format='csc'))

            def compute_partials(self, inputs, partials):
                pass

        model = Group()
        comp = IndepVarComp()
        comp.add_output('x', np.ones(4))
        comp.add_output('y', np.ones(2))

        model.add_subsystem('input', comp)
        model.add_subsystem('example', SparsePartialComp())

        model.connect('input.x', 'example.x')
        model.connect('input.y', 'example.y')

        problem = Problem(model=model)
        problem.setup(check=False)
        problem.run_model()
        totals = problem.compute_totals(['example.f'], ['input.x', 'input.y'])

        assert_rel_error(self, totals['example.f', 'input.x'],
                         [[1., 0., 0., 0.], [0., 2., 3., 4.]])
        assert_rel_error(self, totals['example.f', 'input.y'],
                         [[1., 0.], [0., 1.]])
Esempio n. 26
0
    def test_fan_in_serial_sets_fwd(self):

        prob = Problem()
        prob.model = FanInGrouped()
        prob.model.linear_solver = LinearBlockGS()
        prob.model.sub.linear_solver = LinearBlockGS()

        prob.model.add_design_var('iv.x1')
        prob.model.add_design_var('iv.x2')
        prob.model.add_objective('c3.y')

        prob.setup(vector_class=vector_class, check=False, mode='fwd')
        prob.run_driver()

        indep_list = ['iv.x1', 'iv.x2']
        unknown_list = ['c3.y']

        J = prob.compute_totals(unknown_list,
                                indep_list,
                                return_format='flat_dict')
        assert_rel_error(self, J['c3.y', 'iv.x1'][0][0], -6.0, 1e-6)
        assert_rel_error(self, J['c3.y', 'iv.x2'][0][0], 35.0, 1e-6)
Esempio n. 27
0
    def test_serial_rev(self):
        asize = self.asize
        prob = self.setup_model()

        prob.model.add_design_var('Indep1.x')
        prob.model.add_design_var('Indep2.x')
        prob.model.add_constraint('Con1.y', upper=0.0)
        prob.model.add_constraint('Con2.y', upper=0.0)

        prob.setup(vector_class=vector_class, check=False, mode='rev')
        prob.run_driver()

        J = prob.compute_totals(['Con1.y', 'Con2.y'], ['Indep1.x', 'Indep2.x'],
                                return_format='flat_dict')

        assert_rel_error(
            self, J['Con1.y', 'Indep1.x'],
            np.array([[15., 20., 25.], [15., 20., 25.], [15., 20., 25.]]),
            1e-6)
        expected = np.zeros((asize, asize + 2))
        expected[:, :asize] = np.eye(asize) * 8.0
        assert_rel_error(self, J['Con2.y', 'Indep2.x'], expected, 1e-6)
Esempio n. 28
0
    def test_1d_2fi_cokriging(self):
        # Example from Forrester: Engineering design via surrogate modelling
        def f_expensive(x):
            return ((x * 6 - 2)**2) * sin((x * 6 - 2) * 2)

        def f_cheap(x):
            return 0.5 * ((x * 6 - 2)**2) * sin(
                (x * 6 - 2) * 2) + (x - 0.5) * 10. - 5

        x = array([[[0.0], [0.4], [0.6], [1.0]],
                   [[0.1], [0.2], [0.3], [0.5], [0.7], [0.8], [0.9], [0.0],
                    [0.4], [0.6], [1.0]]])
        y = array([[f_expensive(v) for v in array(x[0]).ravel()],
                   [f_cheap(v) for v in array(x[1]).ravel()]])

        cokrig = MultiFiCoKrigingSurrogate()
        cokrig.train_multifi(x, y)

        new_x = array([0.75])
        mu, sigma = cokrig.predict(new_x)
        assert_rel_error(self, mu, [[f_expensive(new_x[0])]], 0.05)
        assert_rel_error(self, sigma, [[0.]], 0.02)
Esempio n. 29
0
    def test_full_model_fd(self):
        class DontCall(LinearRunOnce):
            def solve(self, vec_names, mode, rel_systems=None):
                raise RuntimeError("This solver should be ignored!")

        class Simple(ExplicitComponent):
            def setup(self):
                self.add_input('x', val=0.0)
                self.add_output('y', val=0.0)

                self.declare_partials('y', 'x')

            def compute(self, inputs, outputs):
                x = inputs['x']
                outputs['y'] = 4.0 * x

        prob = Problem()
        model = prob.model = Group()
        model.add_subsystem('p1', IndepVarComp('x', 0.0), promotes=['x'])
        model.add_subsystem('comp', Simple(), promotes=['x', 'y'])

        model.linear_solver = DontCall()
        model.approx_totals()

        model.add_design_var('x')
        model.add_objective('y')

        prob.setup(check=False, mode='fwd')
        prob.set_solver_print(level=0)
        prob.run_model()

        of = ['comp.y']
        wrt = ['p1.x']
        derivs = prob.driver._compute_totals(of=of,
                                             wrt=wrt,
                                             return_format='dict')

        assert_rel_error(self, derivs['comp.y']['p1.x'], [[4.0]], 1e-6)
Esempio n. 30
0
    def test_sellar(self):
        # Basic sellar test.

        prob = self.prob = Problem()
        model = prob.model = Group()

        model.add_subsystem('px', IndepVarComp('x', 1.0), promotes=['x'])
        model.add_subsystem('pz',
                            IndepVarComp('z', np.array([5.0, 2.0])),
                            promotes=['z'])

        model.add_subsystem('d1',
                            SellarDis1withDerivatives(),
                            promotes=['x', 'z', 'y1', 'y2'])
        model.add_subsystem('d2',
                            SellarDis2withDerivatives(),
                            promotes=['z', 'y1', 'y2'])

        model.add_subsystem('obj_cmp',
                            ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)',
                                     z=np.array([0.0, 0.0]),
                                     x=0.0),
                            promotes=['obj', 'x', 'z', 'y1', 'y2'])

        model.add_subsystem('con_cmp1',
                            ExecComp('con1 = 3.16 - y1'),
                            promotes=['con1', 'y1'])
        model.add_subsystem('con_cmp2',
                            ExecComp('con2 = y2 - 24.0'),
                            promotes=['con2', 'y2'])

        nlbgs = prob.model.nonlinear_solver = NonlinearBlockGS()

        model.approx_totals(method='fd', step=1e-5)

        prob.setup(check=False)
        prob.set_solver_print(level=0)
        prob.run_model()

        assert_rel_error(self, prob['y1'], 25.58830273, .00001)
        assert_rel_error(self, prob['y2'], 12.05848819, .00001)

        wrt = ['z']
        of = ['obj']

        J = prob.compute_totals(of=of, wrt=wrt, return_format='flat_dict')
        assert_rel_error(self, J['obj', 'z'][0][0], 9.61001056, .00001)
        assert_rel_error(self, J['obj', 'z'][0][1], 1.78448534, .00001)