Esempio n. 1
0
    def test_tracing(self):
        # Check tracing of iteration coordinates.
        top = Assembly()
        comp = top.add('comp1', Dummy())
        top.add('driverA', Driver())
        comp = top.add('comp2', Dummy())
        top.add('driverB', Driver())

        sub = top.add('subassy', Assembly())
        comp = sub.add('comp3', Dummy())
        sub.driver.workflow.add('comp3')

        top.driver.workflow = SequentialWorkflow()
        top.driver.workflow.add(('comp1', 'driverA', 'driverB'))
        top.driverA.workflow.add(('comp1', 'comp2'))
        top.driverB.workflow.add(('comp2', 'subassy'))

        trace_out = cStringIO.StringIO()
        enable_trace(trace_out)
        top.run()
        expected = """\
1-comp1
1-driverA.1-comp1
1-driverA.1-comp2
1-driverB.1-comp2
1-driverB.1-subassy.1-comp3
"""
        self.assertEqual(trace_out.getvalue(), expected)

        disable_trace()
        top.run()
        self.assertEqual(trace_out.getvalue(), expected)
    def configure(self):

        self.add('d1', Discipline1_WithDerivatives())
        self.d1.x1 = 1.0
        self.d1.y1 = 1.0
        self.d1.y2 = 1.0
        self.d1.z1 = 5.0
        self.d1.z2 = 2.0

        self.add('d2', Discipline2_WithDerivatives())
        self.d2.y1 = 1.0
        self.d2.y2 = 1.0
        self.d2.z1 = 5.0
        self.d2.z2 = 2.0

        self.add('P1', Paraboloid())
        self.add('P2', Paraboloid())

        self.connect('d1.y1', 'd2.y1')
        self.connect('P1.f_xy', 'd1.x1')
        self.connect('d1.y1', 'P2.x')
        self.connect('d2.y2', 'P2.y')

        self.add('driver', SimpleDriver())
        self.add('driver2', Driver())
        self.add('subdriver', NewtonSolver())
        self.driver.workflow.add(['P1', 'subdriver', 'P2'])
        self.subdriver.workflow.add(['d1', 'd2'])

        self.subdriver.add_parameter('d1.y2', low=-1e99, high=1e99)
        self.subdriver.add_constraint('d1.y2 = d2.y2')

        self.driver.add_parameter('P1.x', low=-1e99, high=1e99)
        self.driver.add_constraint('P2.f_xy < 0')
Esempio n. 3
0
def configure_AEPWindRose(self):
    """Generic configure method for AEPSingleWindRose and AEPMultipleWindRoses.
    After this configure method is called, some connections are hanging loose:
        - if wind_rose_type == 'single':
            - case_gen.wind_rose
        - if wind_rose_type == 'multiple':
            - case_gen.wt_layout

    Examples
    --------

    ### In a single wind rose case:
            def configure(self):
            self.add('case_gen', SingleWindRoseCaseGenerator())
            self.add('postprocess_wind_rose', PostProcessSingleWindRose())
            configure_AEPWindRose(self)
            self.connect('wind_rose', 'case_gen.wind_rose')

    ### In a multiple wind rose case:
        def configure(self):
            self.add('case_gen', MultipleWindRosesCaseGenerator())
            self.add('postprocess_wind_rose', PostProcessMultipleWindRoses())
            configure_AEPWindRose(self)
            self.connect('wt_layout', 'case_gen.wt_layout')

    """
    # Adding
    self.add('driver', Driver())
    self.add('wind_rose_driver', CaseIteratorDriver())

    self.add_default('wf', GenericWindFarm())
    self.add_default('case_gen', GenericWindRoseCaseGenerator())
    self.add_default('postprocess_wind_rose', GenericPostProcessWindRose())

    # Drivers configuration
    self.wind_rose_driver.workflow.add('wf')
    self.wind_rose_driver.add_parameter('wf.wind_speed')
    self.wind_rose_driver.add_parameter('wf.wind_direction')
    self.wind_rose_driver.add_responses(
        ['wf.power', 'wf.wt_power', 'wf.wt_thrust'])

    self.driver.workflow.add(
        ['case_gen', 'wind_rose_driver', 'postprocess_wind_rose'])

    # wiring
    self.connect('wind_speeds',
                 ['case_gen.wind_speeds', 'postprocess_wind_rose.wind_speeds'])
    self.connect(
        'wind_directions',
        ['case_gen.wind_directions', 'postprocess_wind_rose.wind_directions'])
    self.connect('case_gen.all_wind_speeds',
                 'wind_rose_driver.case_inputs.wf.wind_speed')
    self.connect('case_gen.all_wind_directions',
                 'wind_rose_driver.case_inputs.wf.wind_direction')
    self.connect('case_gen.all_frequencies',
                 'postprocess_wind_rose.frequencies')
    self.connect('wind_rose_driver.case_outputs.wf.power',
                 'postprocess_wind_rose.powers')
    self.connect('postprocess_wind_rose.net_aep', 'net_aep')
    self.connect('postprocess_wind_rose.array_aep', 'array_aep')
Esempio n. 4
0
    def test_driver(self):
        # Ensure we can't add a Driver to a component that is not an Assembly.
        comp = Component()

        try:
            comp.add('driver', Driver())
        except Exception as err:
            self.assertEqual(str(err),
                             "A Driver may only be added to an Assembly")
            pass
Esempio n. 5
0
    def test_gradient_options(self):
        options = GradientOptions()

        assert (options.get_metadata("fd_form")["framework_var"])
        assert (options.get_metadata("fd_step")["framework_var"])
        assert (options.get_metadata("fd_step_type")["framework_var"])
        assert (options.get_metadata("force_fd")["framework_var"])
        assert (options.get_metadata("gmres_tolerance")["framework_var"])
        assert (options.get_metadata("gmres_maxiter")["framework_var"])

        assert (Driver().get_metadata("gradient_options")["framework_var"])
Esempio n. 6
0
    def test_gradient_options(self):
        options = GradientOptions()

        assert (options.get_metadata("directional_fd")["framework_var"])
        assert (options.get_metadata("derivative_direction")["framework_var"])
        assert (options.get_metadata("fd_form")["framework_var"])
        assert (options.get_metadata("fd_step")["framework_var"])
        assert (options.get_metadata("fd_step_type")["framework_var"])
        assert (options.get_metadata("force_fd")["framework_var"])
        assert (options.get_metadata("lin_solver")["framework_var"])
        assert (options.get_metadata("atol")["framework_var"])
        assert (options.get_metadata("rtol")["framework_var"])
        assert (options.get_metadata("maxiter")["framework_var"])

        assert (Driver().get_metadata("gradient_options")["framework_var"])
Esempio n. 7
0
    def setup(self, compname, kwargs):

        self.model.add('comp', eval('%s(**kwargs)' % compname))
        self.model.add('sub', Driver())

        self.model.driver.workflow.add('sub')
        self.model.sub.workflow.add('comp')
        self.inputs, self.outputs = self.model.comp.list_deriv_vars()

        for item in self.inputs:
            val = self.model.comp.get(item)
            if hasattr(val, 'shape'):
                shape1 = val.shape
                self.model.comp.set(item, np.random.random(shape1))
            else:
                self.model.comp.set(item, random.random())
Esempio n. 8
0
    def test_mimic(self):
        # Ensure we can mimic a driver.
        top = Assembly()
        top.add('c1', Component())
        top.add('c2', Component())
        top.driver.workflow.add(('c1', 'c2'))
        top.driver.printvars = ['c1.force_execute', 'c2.force_execute']

        recorder1 = FakeRecorder()
        recorder2 = FakeRecorder()
        top.driver.recorders = [recorder1, recorder2]

        workflow_id = id(top.driver.workflow)
        new_driver = Driver()
        new_id = id(new_driver)
        self.assertNotEqual(new_id, id(top.driver))

        top.replace('driver', new_driver)
        self.assertEqual(new_id, id(top.driver))
        self.assertEqual(workflow_id, id(top.driver.workflow))
        self.assertEqual(top.driver.printvars,
                         ['c1.force_execute', 'c2.force_execute'])
        self.assertEqual(top.driver.recorders, [recorder1, recorder2])
Esempio n. 9
0
    def configure(self):
        """ Creates a new Assembly with this problem
        
        Optimal Design at (1.9776, 0, 0)
        
        Optimal Objective = 3.18339"""

        #objective = '(dis1.x1)**2 + dis1.z2 + dis1.y1 + exp(-dis2.y2)'
        #constraint1 = 'dis1.y1 > 3.16'
        #constraint2 = 'dis2.y2 < 24.0'

        # Metamodel for sellar discipline 1

        self.add("meta_model_dis1", MetaModel())
        self.meta_model_dis1.surrogates = {"y1": ResponseSurface()}
        self.meta_model_dis1.model = SellarDiscipline1()
        self.meta_model_dis1.recorder = DBCaseRecorder()
        self.meta_model_dis1.force_execute = True

        # Metamodel for sellar discipline 2
        self.add("meta_model_dis2", MetaModel())
        self.meta_model_dis2.surrogates = {"y2": ResponseSurface()}
        self.meta_model_dis2.model = SellarDiscipline2()
        self.meta_model_dis2.recorder = DBCaseRecorder()
        self.meta_model_dis2.force_execute = True

        #training metalmodel for disc1

        # self.add("DOE_Trainer_dis2",NeighborhoodDOEdriver())
        # self.DOE_Trainer_dis2.DOEgenerator = CentralComposite()
        # self.DOE_Trainer_dis2.alpha = .1
        # self.DOE_Trainer_dis2.add_parameter("meta_model_dis2.z1",low=-10,high=10,start=5.0)
        # self.DOE_Trainer_dis2.add_parameter("meta_model_dis2.z2",low=0,high=10,start=2.0)
        # self.DOE_Trainer_dis2.add_parameter("meta_model_dis2.y1",low=0,high=20)
        # self.DOE_Trainer_dis2.add_event("meta_model_dis2.train_next")
        # self.DOE_Trainer_dis2.force_execute = True

        #optimization of global objective function

        self.add('sysopt', SLSQPdriver())

        self.sysopt.add_objective(
            '(meta_model_dis1.x1)**2 + meta_model_dis1.z2 + meta_model_dis1.y1 + math.exp(-meta_model_dis2.y2)'
        )

        self.sysopt.add_parameter(['meta_model_dis1.z1', 'meta_model_dis2.z1'],
                                  low=-10,
                                  high=10.0,
                                  start=5.0)
        self.sysopt.add_parameter(['meta_model_dis1.z2', 'meta_model_dis2.z2'],
                                  low=0,
                                  high=10.0,
                                  start=2.0)
        self.sysopt.add_parameter('meta_model_dis1.y2', low=-1e99, high=1e99)

        self.sysopt.add_parameter('meta_model_dis2.y1', low=-1e99, high=1e99)

        #feasibility constraints
        self.sysopt.add_constraint('meta_model_dis1.y2 <= meta_model_dis2.y2')
        self.sysopt.add_constraint('meta_model_dis1.y2 >= meta_model_dis2.y2')

        self.sysopt.add_constraint('meta_model_dis2.y1 <= meta_model_dis1.y1')
        self.sysopt.add_constraint('meta_model_dis2.y1 >= meta_model_dis1.y1')

        self.sysopt.add_constraint('3.16 < meta_model_dis1.y1')
        self.sysopt.add_constraint('meta_model_dis2.y2 < 24.0')
        self.sysopt.force_execute = True

        #optimization of discipline 1 (discipline 2 of the sellar problem has no local variables)

        self.add('local_opt_dis1', SLSQPdriver())
        self.local_opt_dis1.add_objective('meta_model_dis1.y1')
        self.local_opt_dis1.add_parameter('meta_model_dis1.x1',
                                          low=0,
                                          high=10.0)
        self.local_opt_dis1.add_constraint('3.16 < meta_model_dis1.y1')
        self.local_opt_dis1.add_event('meta_model_dis1.train_next')
        self.local_opt_dis1.force_execute = True

        self.local_opt_dis1.workflow.add(['meta_model_dis1'])

        #training metalmodel for disc1

        self.add("DOE_Trainer_dis1", NeighborhoodDOEdriver())
        self.DOE_Trainer_dis1.DOEgenerator = CentralComposite()
        self.DOE_Trainer_dis1.alpha = .1
        self.DOE_Trainer_dis1.add_parameter("meta_model_dis1.z1",
                                            low=-10,
                                            high=10,
                                            start=5.0)
        self.DOE_Trainer_dis1.add_parameter("meta_model_dis1.z2",
                                            low=0,
                                            high=10,
                                            start=2.0)
        self.DOE_Trainer_dis1.add_parameter("meta_model_dis1.y2",
                                            low=-100,
                                            high=100)
        self.DOE_Trainer_dis1.add_event("meta_model_dis1.train_next")
        self.DOE_Trainer_dis1.force_execute = True
        self.DOE_Trainer_dis1.workflow.add("local_opt_dis1")

        self.add('reset_train', Driver())
        self.reset_train.add_event('meta_model_dis1.reset_training_data')
        self.reset_train.add_event('meta_model_dis2.reset_training_data')
        self.reset_train.workflow.add(['meta_model_dis1', 'meta_model_dis2'])
        self.reset_train.force_execute = True

        #build workflow for bliss2000

        self.add('driver', FixedPointIterator())
        #self.add('main_driver', IterateUntil())
        #self.main_driver.max_iterations = 1
        self.driver.tolerance = .0001
        # self.driver.workflow.add(['local_opt_dis1','reset_train','DOE_Trainer_dis1','DOE_Trainer_dis2','sysopt'])
        self.driver.workflow.add(['sysopt'])
        self.driver.add_parameter('x1_store', low=0, high=10.0)
        self.driver.add_constraint('meta_model_dis1.x1 = x1_store')
        self.driver.add_parameter('z1_store', low=0, high=10.0)
        self.driver.add_constraint('meta_model_dis1.z1 = z1_store')
        self.driver.add_parameter('z2_store', low=0, high=10.0)
        self.driver.add_constraint('meta_model_dis1.z2 = z2_store')
    def _setup(self):
        """ Setup to begin new run. """
        # if params have changed we need to setup systems again
        if self.workflow._system is None:
            obj = self
            while obj.parent is not None:
                obj = obj.parent
            obj._setup()

        if not self.sequential:
            # Save model to egg.
            # Must do this before creating any locks or queues.
            self._replicants += 1
            version = 'replicant.%d' % (self._replicants)

            # If only local host will be used, we can skip determining
            # distributions required by the egg.
            allocators = RAM.list_allocators()
            need_reqs = False
            if not self.ignore_egg_requirements:
                for allocator in allocators:
                    if not isinstance(allocator, LocalAllocator):
                        need_reqs = True
                        break

            # Replicate and mutate model to run our workflow once.
            # Originally this was done in-place, but that 'invalidated'
            # various workflow quantities.
            replicant = self.parent.copy()
            workflow = replicant.get(self.name + '.workflow')
            driver = replicant.add('driver', Driver())
            workflow.parent = driver
            workflow.scope = None
            replicant.driver.workflow = workflow
            egg_info = replicant.save_to_egg(self.name,
                                             version,
                                             need_requirements=need_reqs)
            replicant = workflow = driver = None  # Release objects.
            gc.collect()  # Collect/compact before possible fork.

            self._egg_file = egg_info[0]
            self._egg_required_distributions = egg_info[1]
            self._egg_orphan_modules = [name for name, path in egg_info[2]]

        inp_paths = []
        inp_values = []
        for path, param in self.get_parameters().items():
            if isinstance(path, tuple):
                path = path[0]  # Use first target of ParameterGroup.
            path = make_legal_path(path)
            value = self.get('case_inputs.' + path)
            for target in param.targets:
                inp_paths.append(target)
                inp_values.append(value)

        outputs = self.get_responses().keys()
        extra_outputs = self.workflow._rec_outputs

        length = len(inp_values[0]) if inp_values else 0
        cases = []
        for i in range(length):
            inputs = []
            for j in range(len(inp_paths)):
                inputs.append((inp_paths[j], inp_values[j][i]))
            cases.append(
                _Case(i,
                      inputs,
                      outputs,
                      extra_outputs,
                      parent_uuid=self._case_uuid))
        self.init_responses(length)

        self._iter = iter(cases)
        self._abort_exc = None
Esempio n. 11
0
    def configure(self):    
        self._tdir = mkdtemp()        
        
        self.comp_name = None
        #check to make sure no more than one component is being referenced
        compnames = set()
        for param in self.parent.get_parameters().values():
            compnames.update(param.get_referenced_compnames())

        if len(compnames) > 1:
            self.parent.raise_exception('The EGO architecture can only be used on one'
                                        'component at a time, but parameters from %s '
                                        'were added to the problem formulation.' %compnames, 
                                        ValueError)
        self.comp_name = compnames.pop()        
        #change name of component to add '_model' to it. 
        #     lets me name the metamodel as the old name
        self.comp= getattr(self.parent,self.comp_name)
        self.comp.name = "%s_model"%self.comp_name
        
        #add in the metamodel
        meta_model = self.parent.add(self.comp_name,MetaModel()) #metamodel now replaces old component with same name
        meta_model.default_surrogate = KrigingSurrogate()
        meta_model.model = self.comp
        
        meta_model_recorder = DBCaseRecorder(os.path.join(self._tdir,'trainer.db'))
        meta_model.recorder = meta_model_recorder
        
        EI = self.parent.add("EI",ExpectedImprovement())
        self.objective = self.parent.get_objectives().keys()[0]
        EI.criteria = self.objective
        
        pfilter = self.parent.add("filter",ParetoFilter())
        pfilter.criteria = [self.objective]
        pfilter.case_sets = [meta_model_recorder.get_iterator(),]
        
        #Driver Configuration
        DOE_trainer = self.parent.add("DOE_trainer",DOEdriver())
        DOE_trainer.sequential = True
        DOE_trainer.DOEgenerator = OptLatinHypercube(num_samples=self.initial_DOE_size)
        
        for name,param in self.parent.get_parameters().iteritems(): 
            DOE_trainer.add_parameter(param)

        DOE_trainer.add_event("%s.train_next"%self.comp_name)
        
        DOE_trainer.case_outputs = [self.objective]
        DOE_trainer.recorders = [DBCaseRecorder(':memory:')]
        
        EI_opt = self.parent.add("EI_opt",Genetic())
        EI_opt.opt_type = "maximize"
        EI_opt.population_size = 100
        EI_opt.generations = 10
        #EI_opt.selection_method = "tournament"
        
        for name,param in self.parent.get_parameters().iteritems(): 
            EI_opt.add_parameter(param)
        EI_opt.add_objective("EI.%s"%self.EI_PI)
        
        retrain = self.parent.add("retrain",Driver())
        retrain.recorders = self.data_recorders
        
        retrain.add_event("%s.train_next"%self.comp_name)
        
        iter = self.parent.add("iter",IterateUntil())
        iter.max_iterations = self.sample_iterations
        iter.add_stop_condition('EI.PI <= %s'%self.min_ei_pi)
        
        #Data Connections
        self.parent.connect("filter.pareto_set","EI.best_case")
        self.parent.connect(self.objective,"EI.predicted_value")        
        
        #Iteration Heirarchy
        self.parent.driver.workflow.add(['DOE_trainer', 'iter'])
        #DOE_trainer.workflow.add(self.comp_name)
        
        iter.workflow = SequentialWorkflow()
        iter.workflow.add(['filter', 'EI_opt', 'retrain'])
        
        #EI_opt.workflow.add([self.comp_name,'EI'])
        retrain.workflow.add(self.comp_name)
 def execute(self):
     Driver.execute(self)
Esempio n. 13
0
    def configure(self):
        """ Set it all up. """

        # Place all design variables on the Assembly boundary.
        self.add('S', Float(0.0, iotype='in', desc='Wing Area'))
        self.add('ac_w',
                 Float(0.0, iotype='in', desc='Weight of aircraft + payload'))
        self.add('SFCSL', Float(0.0, iotype='in', desc='sea-level SFC value'))
        self.add('thrust_sl',
                 Float(0.0, iotype='in', desc='Maximum sea-level thrust'))
        self.add('AR', Float(0.0, iotype='in', desc='Aspect Ratio'))
        self.add('oswald', Float(0.0, iotype='in', desc="Oswald's efficiency"))

        # Splines
        self.add(
            'SysXBspline',
            SysXBspline(num_elem=self.num_elem,
                        num_pt=self.num_pt,
                        x_init=self.x_pts,
                        jac_h=self.jac_h))
        self.SysXBspline.x_pt = self.x_pts

        self.add(
            'SysHBspline',
            SysHBspline(num_elem=self.num_elem,
                        num_pt=self.num_pt,
                        x_init=self.x_pts,
                        jac_h=self.jac_h))

        self.add(
            'SysMVBspline',
            SysMVBspline(num_elem=self.num_elem,
                         num_pt=self.num_pt,
                         x_init=self.x_pts,
                         jac_h=self.jac_h))

        self.add(
            'SysGammaBspline',
            SysGammaBspline(num_elem=self.num_elem,
                            num_pt=self.num_pt,
                            x_init=self.x_pts,
                            jac_gamma=self.jac_gamma))

        # Atmospherics
        self.add('SysSFC', SysSFC(num_elem=self.num_elem))
        self.add('SysTemp', SysTemp(num_elem=self.num_elem))
        self.add('SysRho', SysRho(num_elem=self.num_elem))
        self.add('SysSpeed', SysSpeed(num_elem=self.num_elem))

        self.connect('SFCSL', 'SysSFC.SFCSL')
        self.connect('SysHBspline.h', 'SysSFC.h')
        self.connect('SysHBspline.h', 'SysTemp.h')
        self.connect('SysHBspline.h', 'SysRho.h')
        self.connect('SysTemp.temp', 'SysRho.temp')
        self.connect('SysTemp.temp', 'SysSpeed.temp')
        self.connect('SysMVBspline.M', 'SysSpeed.M')
        self.connect('SysMVBspline.v_spline', 'SysSpeed.v_spline')

        # -----------------------------------
        # Comps for Coupled System begin here
        # -----------------------------------

        # Vertical Equilibrium
        self.add('SysCLTar', SysCLTar(num_elem=self.num_elem))

        self.connect('S', 'SysCLTar.S')
        self.connect('ac_w', 'SysCLTar.ac_w')
        self.connect('SysRho.rho', 'SysCLTar.rho')
        self.connect('SysGammaBspline.Gamma', 'SysCLTar.Gamma')
        self.connect('SysSpeed.v', 'SysCLTar.v')

        # Tripan Alpha
        self.add(
            'SysTripanCLSurrogate',
            SysTripanCLSurrogate(num_elem=self.num_elem,
                                 num=self.num,
                                 CL=self.CL_arr))
        self.connect('SysMVBspline.M', 'SysTripanCLSurrogate.M')
        self.connect('SysHBspline.h', 'SysTripanCLSurrogate.h')
        self.connect('SysCLTar.CL', 'SysTripanCLSurrogate.CL_tar')

        # Tripan Eta
        self.add(
            'SysTripanCMSurrogate',
            SysTripanCMSurrogate(num_elem=self.num_elem,
                                 num=self.num,
                                 CM=self.CM_arr))
        self.connect('SysMVBspline.M', 'SysTripanCMSurrogate.M')
        self.connect('SysHBspline.h', 'SysTripanCMSurrogate.h')
        self.connect('SysTripanCLSurrogate.alpha',
                     'SysTripanCMSurrogate.alpha')

        # Tripan Drag
        self.add(
            'SysTripanCDSurrogate',
            SysTripanCDSurrogate(num_elem=self.num_elem,
                                 num=self.num,
                                 CD=self.CD_arr))
        self.connect('SysMVBspline.M', 'SysTripanCDSurrogate.M')
        self.connect('SysHBspline.h', 'SysTripanCDSurrogate.h')
        self.connect('SysTripanCMSurrogate.eta', 'SysTripanCDSurrogate.eta')
        self.connect('SysTripanCLSurrogate.alpha',
                     'SysTripanCDSurrogate.alpha')

        # Horizontal Equilibrium
        self.add('SysCTTar', SysCTTar(num_elem=self.num_elem))

        self.connect('SysGammaBspline.Gamma', 'SysCTTar.Gamma')
        self.connect('SysTripanCDSurrogate.CD', 'SysCTTar.CD')
        self.connect('SysTripanCLSurrogate.alpha', 'SysCTTar.alpha')
        self.connect('SysRho.rho', 'SysCTTar.rho')
        self.connect('SysSpeed.v', 'SysCTTar.v')
        self.connect('S', 'SysCTTar.S')
        self.connect('ac_w', 'SysCTTar.ac_w')

        # Weight
        self.add('SysFuelWeight', SysFuelWeight(num_elem=self.num_elem))
        self.SysFuelWeight.fuel_w = np.linspace(1.0, 0.0, self.num_elem + 1)

        self.connect('SysSpeed.v', 'SysFuelWeight.v')
        self.connect('SysGammaBspline.Gamma', 'SysFuelWeight.Gamma')
        self.connect('SysCTTar.CT_tar', 'SysFuelWeight.CT_tar')
        self.connect('SysXBspline.x', 'SysFuelWeight.x')
        self.connect('SysSFC.SFC', 'SysFuelWeight.SFC')
        self.connect('SysRho.rho', 'SysFuelWeight.rho')
        self.connect('S', 'SysFuelWeight.S')

        # ------------------------------------------------
        # Coupled Analysis - Newton for outer loop
        # TODO: replace with GS/Newton cascaded solvers when working
        # -----------------------------------------------

        self.add('coupled_solver', NewtonSolver())

        # Direct connections (cycles) are faster.
        self.connect('SysFuelWeight.fuel_w', 'SysCLTar.fuel_w')
        self.connect('SysCTTar.CT_tar', 'SysCLTar.CT_tar')
        self.connect('SysTripanCLSurrogate.alpha', 'SysCLTar.alpha')
        self.connect('SysTripanCMSurrogate.eta', 'SysTripanCLSurrogate.eta')
        self.connect('SysFuelWeight.fuel_w', 'SysCTTar.fuel_w')

        #self.coupled_solver.add_parameter('SysCLTar.fuel_w')
        #self.coupled_solver.add_constraint('SysFuelWeight.fuel_w = SysCLTar.fuel_w')
        #self.coupled_solver.add_parameter('SysCLTar.CT_tar')
        #self.coupled_solver.add_constraint('SysCTTar.CT_tar = SysCLTar.CT_tar')
        #self.coupled_solver.add_parameter('SysCLTar.alpha')
        #self.coupled_solver.add_constraint('SysTripanCLSurrogate.alpha = SysCLTar.alpha')
        #self.coupled_solver.add_parameter('SysTripanCLSurrogate.eta')
        #self.coupled_solver.add_constraint('SysTripanCMSurrogate.eta = SysTripanCLSurrogate.eta')
        #self.coupled_solver.add_parameter('SysCTTar.fuel_w')
        #self.coupled_solver.add_constraint('SysFuelWeight.fuel_w = SysCTTar.fuel_w')

        # (Implicit comps)
        self.coupled_solver.add_parameter('SysTripanCLSurrogate.alpha')
        self.coupled_solver.add_constraint(
            'SysTripanCLSurrogate.alpha_res = 0')
        self.coupled_solver.add_parameter('SysTripanCMSurrogate.eta')
        self.coupled_solver.add_constraint('SysTripanCMSurrogate.CM = 0')

        # --------------------
        # Downstream of solver
        # --------------------

        # Functionals (i.e., components downstream of the coupled system.)
        self.add('SysTau', SysTau(num_elem=self.num_elem))
        self.add('SysTmin', SysTmin(num_elem=self.num_elem))
        self.add('SysTmax', SysTmax(num_elem=self.num_elem))
        #self.add('SysSlopeMin', SysSlopeMin(num_elem=self.num_elem))
        #self.add('SysSlopeMax', SysSlopeMax(num_elem=self.num_elem))
        self.add('SysFuelObj', SysFuelObj(num_elem=self.num_elem))
        self.add('SysHi', SysHi(num_elem=self.num_elem))
        self.add('SysHf', SysHf(num_elem=self.num_elem))
        self.add('SysMi', SysMi(num_elem=self.num_elem))
        self.add('SysMf', SysMf(num_elem=self.num_elem))
        self.add('SysBlockTime', SysBlockTime(num_elem=self.num_elem))

        self.connect('S', 'SysTau.S')
        self.connect('thrust_sl', 'SysTau.thrust_sl')
        self.connect('SysRho.rho', 'SysTau.rho')
        self.connect('SysCTTar.CT_tar', 'SysTau.CT_tar')
        self.connect('SysHBspline.h', 'SysTau.h')
        self.connect('SysSpeed.v', 'SysTau.v')
        self.connect('SysTau.tau', 'SysTmin.tau')
        self.connect('SysTau.tau', 'SysTmax.tau')
        #self.connect('SysGammaBspline.Gamma', 'SysSlopeMin.Gamma')
        #self.connect('SysGammaBspline.Gamma', 'SysSlopeMax.Gamma')
        self.connect('SysFuelWeight.fuel_w', 'SysFuelObj.fuel_w')
        self.connect('SysHBspline.h', 'SysHi.h')
        self.connect('SysHBspline.h', 'SysHf.h')
        self.connect('SysMVBspline.M', 'SysMi.M')
        self.connect('SysMVBspline.M', 'SysMf.M')
        self.connect('SysXBspline.x', 'SysBlockTime.x')
        self.connect('SysSpeed.v', 'SysBlockTime.v')
        self.connect('SysGammaBspline.Gamma', 'SysBlockTime.Gamma')

        # Promote useful variables to the boundary.
        self.create_passthrough('SysHBspline.h_pt')
        self.connect('h_pt', 'SysGammaBspline.h_pt')
        self.create_passthrough('SysMVBspline.v_pt')
        self.create_passthrough('SysMVBspline.M_pt')
        self.create_passthrough('SysTmin.Tmin')
        self.create_passthrough('SysTmax.Tmax')
        self.create_passthrough('SysFuelObj.fuelburn')
        self.create_passthrough('SysHi.h_i')
        self.create_passthrough('SysHf.h_f')

        #-------------------------
        # Iteration Hierarchy
        #-------------------------
        #self.driver.workflow.add(['SysXBspline', 'SysHBspline',
        #'SysMVBspline', 'SysGammaBspline',
        #'SysSFC', 'SysTemp', 'SysRho', 'SysSpeed',
        #'coupled_solver',
        #'SysTau', 'SysTmin', 'SysTmax',
        #'SysFuelObj', 'SysHi', 'SysHf', 'SysMi', 'SysMf', 'SysBlockTime'])

        self.add('bsplines', Driver())
        self.add('atmosphere', Driver())
        self.add('SysCLTar_Sub', Driver())
        self.add('SysTripanCLSurrogate_Sub', Driver())
        self.add('SysTripanCMSurrogate_Sub', Driver())
        self.add('SysTripanCDSurrogate_Sub', Driver())
        self.add('SysCTTar_Sub', Driver())
        self.add('SysFuelWeight_Sub', Driver())

        self.driver.workflow.add([
            'bsplines', 'atmosphere', 'coupled_solver', 'SysTau', 'SysTmin',
            'SysTmax', 'SysFuelObj', 'SysHi', 'SysHf', 'SysMi', 'SysMf',
            'SysBlockTime'
        ])

        self.bsplines.workflow.add(
            ['SysXBspline', 'SysHBspline', 'SysMVBspline', 'SysGammaBspline'])

        self.atmosphere.workflow.add(
            ['SysSFC', 'SysTemp', 'SysRho', 'SysSpeed'])

        self.coupled_solver.workflow.add([
            'SysCLTar_Sub', 'SysTripanCLSurrogate_Sub',
            'SysTripanCMSurrogate_Sub', 'SysTripanCDSurrogate_Sub',
            'SysCTTar_Sub', 'SysFuelWeight_Sub'
        ])

        self.SysCLTar_Sub.workflow.add(['SysCLTar'])
        self.SysTripanCLSurrogate_Sub.workflow.add(['SysTripanCLSurrogate'])
        self.SysTripanCMSurrogate_Sub.workflow.add(['SysTripanCMSurrogate'])
        self.SysTripanCDSurrogate_Sub.workflow.add(['SysTripanCDSurrogate'])
        self.SysCTTar_Sub.workflow.add(['SysCTTar'])
        self.SysFuelWeight_Sub.workflow.add(['SysFuelWeight'])

        #-------------------------
        # Driver Settings
        #-------------------------

        self.driver.gradient_options.lin_solver = "linear_gs"
        self.driver.gradient_options.maxiter = 1
        self.driver.gradient_options.derivative_direction = 'adjoint'

        self.coupled_solver.atol = 1e-9
        self.coupled_solver.rtol = 1e-9
        self.coupled_solver.max_iteration = 15
        self.coupled_solver.gradient_options.atol = 1e-14
        self.coupled_solver.gradient_options.rtol = 1e-20
        self.coupled_solver.gradient_options.maxiter = 50
        self.coupled_solver.iprint = 1
 def execute(self):
     Driver.execute(self)
Esempio n. 15
0
            msg = "Component 'sub.comp' is not in the scope of the top assembly."
            self.assertEqual(str(err), msg)
        else:
            self.fail('Expected AttributeError')
            
        # Test 3, add a comp that does not exist
        try:
            self.model.driver.workflow.add('stuff', check=True)
        except AttributeError, err:
            msg = "Component 'stuff' does not exist in the top assembly."
            self.assertEqual(str(err), msg)
        else:
            self.fail('Expected AttributeError')
            
        # Test 4, create a driver recursion loop
        self.model.add('driver2', Driver())
        self.model.driver.workflow.add('driver2', check=True)
        try:
            self.model.driver2.workflow.add('driver', check=True)
        except AttributeError, err:
            msg = "Driver recursion loop detected"
            self.assertEqual(str(err), msg)
        else:
            self.fail('Expected AttributeError')


if __name__ == '__main__':
    import nose
    import sys
    sys.argv.append('--cover-package=openmdao')
    sys.argv.append('--cover-erase')
Esempio n. 16
0
 def test_get_entry_group(self):
     self.assertEqual(_get_entry_group(Driver()), 'openmdao.driver')