class Constraint(object):
    """ Object that stores info for a single constraint. """
    
    def __init__(self, lhs, comparator, rhs, scaler, adder, scope=None):
        self.lhs = ExprEvaluator(lhs, scope=scope)
        if not self.lhs.check_resolve():
            raise ValueError("Constraint '%s' has an invalid left-hand-side." \
                              % ' '.join([lhs, comparator, rhs]))
        self.comparator = comparator
        self.rhs = ExprEvaluator(rhs, scope=scope)
        if not self.rhs.check_resolve():
            raise ValueError("Constraint '%s' has an invalid right-hand-side." \
                              % ' '.join([lhs, comparator, rhs]))
        
        if not isinstance(scaler, float):
            raise ValueError("Scaler parameter should be a float")
        self.scaler = scaler
        
        if scaler <= 0.0:
            raise ValueError("Scaler parameter should be a float > 0")
        
        if not isinstance(adder, float):
            raise ValueError("Adder parameter should be a float")
        self.adder = adder
        
    def evaluate(self, scope):
        """Returns a tuple of the form (lhs, rhs, comparator, is_violated)."""
        
        lhs = (self.lhs.evaluate(scope) + self.adder)*self.scaler
        rhs = (self.rhs.evaluate(scope) + self.adder)*self.scaler
        return (lhs, rhs, self.comparator, not _ops[self.comparator](lhs, rhs))
        
    def evaluate_gradient(self, scope, stepsize=1.0e-6, wrt=None):
        """Returns the gradient of the constraint eq/inep as a tuple of the
        form (lhs, rhs, comparator, is_violated)."""
        
        lhs = self.lhs.evaluate_gradient(scope=scope, stepsize=stepsize, wrt=wrt)
        for key, value in lhs.iteritems():
            lhs[key] = (value + self.adder)*self.scaler
            
        rhs = self.rhs.evaluate_gradient(scope=scope, stepsize=stepsize, wrt=wrt)
        for key, value in rhs.iteritems():
            rhs[key] = (value + self.adder)*self.scaler
            
        return (lhs, rhs, self.comparator, not _ops[self.comparator](lhs, rhs))
        
    def get_referenced_compnames(self):
        return self.lhs.get_referenced_compnames().union(self.rhs.get_referenced_compnames())

    def __str__(self):
        return ' '.join([self.lhs.text, self.comparator, self.rhs.text])
Esempio n. 2
0
    def test_eval_gradient_lots_of_vars(self):
        top = set_as_top(Assembly())
        top.add('comp1', B())
        #build expr
        expr = "2*comp1.in1 + 3*comp1.in11"

        exp = ExprEvaluator(expr, top.driver)
        grad = exp.evaluate_gradient(scope=top)

        assert_rel_error(self, grad['comp1.in1'], 2.0, 0.00001)
        assert_rel_error(self, grad['comp1.in11'], 3.0, 0.00001)

        expr = "asin(comp1.in1)"
        exp = ExprEvaluator(expr, top.driver)
        grad = exp.evaluate_gradient(scope=top)

        assert_rel_error(self, grad['comp1.in1'], 1.0, 0.00001)
    def test_eval_gradient_lots_of_vars(self):
        top = set_as_top(Assembly())
        top.add('comp1', B())
        #build expr
        expr = "2*comp1.in1 + 3*comp1.in11"

        exp = ExprEvaluator(expr, top.driver)
        grad = exp.evaluate_gradient(scope=top)

        assert_rel_error(self, grad['comp1.in1'], 2.0, 0.00001)
        assert_rel_error(self, grad['comp1.in11'], 3.0, 0.00001)

        expr = "asin(comp1.in1)"
        exp = ExprEvaluator(expr, top.driver)
        grad = exp.evaluate_gradient(scope=top)

        assert_rel_error(self, grad['comp1.in1'], 1.0, 0.00001)
    def test_eval_gradient_array(self):
        top = set_as_top(Assembly())
        top.add('comp1', A())
        top.run()

        # Uncomment these when arrays work
        exp = ExprEvaluator('4.0*comp1.b2d[0][1]*comp1.b2d[1][1]', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        assert_rel_error(self, grad['comp1.b2d[0][1]'], 12.0, 0.00001)
        assert_rel_error(self, grad['comp1.b2d[1][1]'], 4.0, 0.00001)
    def test_eval_gradient_array(self):
        top = set_as_top(Assembly())
        top.add('comp1', A())
        top.run()

        # Uncomment these when arrays work
        exp = ExprEvaluator('4.0*comp1.b2d[0][1]*comp1.b2d[1][1]', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        assert_rel_error(self, grad['comp1.b2d[0][1]'], 12.0, 0.00001)
        assert_rel_error(self, grad['comp1.b2d[1][1]'], 4.0, 0.00001)
    def test_eval_gradient(self):
        top = set_as_top(Assembly())
        top.add('comp1', Simple())
        top.run()

        exp = ExprEvaluator('3.0*comp1.c', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        self.assertEqual(top.comp1.c, 7.0)
        assert_rel_error(self, grad['comp1.c'], 3.0, 0.00001)

        # Commented out this test, until we find a case that can't be
        # handled analytically
        # interface test: step size
        # (for linear slope, larger stepsize more accurate because of
        # python's rounding)
        #grad2 = exp.evaluate_gradient(scope=top, stepsize=0.1)
        #assert( abs(grad['comp1.c'] - 3.0) > abs(grad2['comp1.c'] - 3.0) )

        # More complicated, multiple comps
        top.add('comp2', Simple())

        exp = ExprEvaluator('comp2.b*comp1.c**2', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        self.assertEqual(len(grad), 2)
        assert_rel_error(self, grad['comp1.c'], 70.0, 0.00001)
        assert_rel_error(self, grad['comp2.b'], 49.0, 0.00001)

        # test limited varset
        grad = exp.evaluate_gradient(scope=top, wrt=['comp2.b'])
        self.assertEqual(len(grad), 1)

        exp = ExprEvaluator('pow(comp2.b,2)', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        assert_rel_error(self, grad['comp2.b'], 10.0, 0.00001)

        exp = ExprEvaluator('pow(comp2.b,3)', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        assert_rel_error(self, grad['comp2.b'], 75.0, 0.00001)

        exp = ExprEvaluator('log(comp2.a)', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        assert_rel_error(self, grad['comp2.a'], 1. / top.comp2.a, 0.00001)

        exp = ExprEvaluator('sin(cos(comp2.b))+sqrt(comp2.a)/comp1.c',
                            top.driver)
        grad = exp.evaluate_gradient(scope=top)
        g1 = -sin(top.comp2.b) * cos(cos(
            top.comp2.b))  #true gradient components
        g2 = (2 * sqrt(top.comp2.a) * top.comp1.c)**-1
        g3 = -sqrt(top.comp2.a) / top.comp1.c**2

        assert_rel_error(self, grad['comp2.b'], g1, 0.00001)
        assert_rel_error(self, grad['comp2.a'], g2, 0.00001)
        assert_rel_error(self, grad['comp1.c'], g3, 0.00001)
Esempio n. 7
0
    def test_eval_gradient_array(self):
        top = set_as_top(Assembly())
        top.add('comp1', A())
        top.run()

        # Uncomment these when arrays work
        exp = ExprEvaluator('4.0*comp1.b2d[0][1]*comp1.b2d[1][1]', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        assert_rel_error(self, grad['comp1.b2d[0][1]'], 12.0, 0.00001)
        assert_rel_error(self, grad['comp1.b2d[1][1]'], 4.0, 0.00001)

        exp = ExprEvaluator('comp1.c2d**2', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        assert_rel_error(self, grad['comp1.c2d'][0, 0], 0.0, 0.00001)
        assert_rel_error(self, grad['comp1.c2d'][1, 1], 2.0, 0.00001)
        assert_rel_error(self, grad['comp1.c2d'][2, 2], 4.0, 0.00001)
        assert_rel_error(self, grad['comp1.c2d'][3, 3], 6.0, 0.00001)

        exp = ExprEvaluator('comp1.c1d**2', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        assert_rel_error(self, grad['comp1.c1d'][0, 0], 0.0, 0.00001)
        assert_rel_error(self, grad['comp1.c1d'][1, 1], 2.0, 0.00001)
        assert_rel_error(self, grad['comp1.c1d'][2, 2], 4.0, 0.00001)
        assert_rel_error(self, grad['comp1.c1d'][3, 3], 6.0, 0.00001)

        exp = ExprEvaluator('comp1.a2d + comp1.c2d**2', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        a2d_grad, c2d_grad = grad['comp1.a2d'], grad['comp1.c2d']
        assert_rel_error(self, a2d_grad[0, 0], 1.0, 0.00001)
        assert_rel_error(self, a2d_grad[1, 1], 1.0, 0.00001)
        assert_rel_error(self, a2d_grad[2, 2], 1.0, 0.00001)
        assert_rel_error(self, a2d_grad[3, 3], 1.0, 0.00001)

        assert_rel_error(self, c2d_grad[0, 0], 0.0, 0.00001)
        assert_rel_error(self, c2d_grad[1, 1], 2.0, 0.00001)
        assert_rel_error(self, c2d_grad[2, 2], 4.0, 0.00001)
        assert_rel_error(self, c2d_grad[3, 3], 6.0, 0.00001)
    def test_eval_gradient_array(self):
        top = set_as_top(Assembly())
        top.add('comp1', A())
        top.run()

        # Uncomment these when arrays work
        exp = ExprEvaluator('4.0*comp1.b2d[0][1]*comp1.b2d[1][1]', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        assert_rel_error(self, grad['comp1.b2d[0][1]'], 12.0, 0.00001)
        assert_rel_error(self, grad['comp1.b2d[1][1]'], 4.0, 0.00001)

        exp = ExprEvaluator('comp1.c2d**2', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        assert_rel_error(self, grad['comp1.c2d'][0,0], 0.0, 0.00001)
        assert_rel_error(self, grad['comp1.c2d'][1,1], 2.0, 0.00001)
        assert_rel_error(self, grad['comp1.c2d'][2,2], 4.0, 0.00001)
        assert_rel_error(self, grad['comp1.c2d'][3,3], 6.0, 0.00001)

        exp = ExprEvaluator('comp1.c1d**2', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        assert_rel_error(self, grad['comp1.c1d'][0,0], 0.0, 0.00001)
        assert_rel_error(self, grad['comp1.c1d'][1,1], 2.0, 0.00001)
        assert_rel_error(self, grad['comp1.c1d'][2,2], 4.0, 0.00001)
        assert_rel_error(self, grad['comp1.c1d'][3,3], 6.0, 0.00001)

        exp = ExprEvaluator('comp1.a2d + comp1.c2d**2', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        a2d_grad, c2d_grad = grad['comp1.a2d'], grad['comp1.c2d']
        assert_rel_error(self, a2d_grad[0,0], 1.0, 0.00001)
        assert_rel_error(self, a2d_grad[1,1], 1.0, 0.00001)
        assert_rel_error(self, a2d_grad[2,2], 1.0, 0.00001)
        assert_rel_error(self, a2d_grad[3,3], 1.0, 0.00001)

        assert_rel_error(self, c2d_grad[0,0], 0.0, 0.00001)
        assert_rel_error(self, c2d_grad[1,1], 2.0, 0.00001)
        assert_rel_error(self, c2d_grad[2,2], 4.0, 0.00001)
        assert_rel_error(self, c2d_grad[3,3], 6.0, 0.00001)
    def test_eval_gradient(self):
        top = set_as_top(Assembly())
        top.add('comp1', Simple())
        top.run()
        
        exp = ExprEvaluator('3.0*comp1.c', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        self.assertEqual(top.comp1.c, 7.0)
        assert_rel_error(self, grad['comp1.c'], 3.0, 0.00001)
        
        # Commented out this test, until we find a case that can't be
        # handled analytically
        # interface test: step size
        # (for linear slope, larger stepsize more accurate because of
        # python's rounding)
        #grad2 = exp.evaluate_gradient(scope=top, stepsize=0.1)
        #assert( abs(grad['comp1.c'] - 3.0) > abs(grad2['comp1.c'] - 3.0) )
        
        # More complicated, multiple comps
        top.add('comp2', Simple())

        exp = ExprEvaluator('comp2.b*comp1.c**2', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        self.assertEqual(len(grad), 2)
        assert_rel_error(self, grad['comp1.c'], 70.0, 0.00001)
        assert_rel_error(self, grad['comp2.b'], 49.0, 0.00001)

        # test limited varset
        grad = exp.evaluate_gradient(scope=top, wrt=['comp2.b'])
        self.assertEqual(len(grad), 1)
        
        exp = ExprEvaluator('pow(comp2.b,2)', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        assert_rel_error(self, grad['comp2.b'], 10.0, 0.00001)
        
        exp = ExprEvaluator('pow(comp2.b,3)', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        assert_rel_error(self, grad['comp2.b'], 75.0, 0.00001)
        
        exp = ExprEvaluator('log(comp2.a)', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        assert_rel_error(self, grad['comp2.a'], 1./top.comp2.a, 0.00001)
                
        exp = ExprEvaluator('sin(cos(comp2.b))+sqrt(comp2.a)/comp1.c', top.driver)
        grad = exp.evaluate_gradient(scope=top)
        g1=-sin(top.comp2.b)*cos(cos(top.comp2.b)) #true gradient components
        g2=(2*sqrt(top.comp2.a)*top.comp1.c)**-1
        g3=-sqrt(top.comp2.a)/top.comp1.c**2
        
        assert_rel_error(self, grad['comp2.b'], g1, 0.00001)
        assert_rel_error(self, grad['comp2.a'], g2, 0.00001)
        assert_rel_error(self, grad['comp1.c'], g3, 0.00001)
class Constraint(object):
    """ Object that stores info for a single constraint. """
    def __init__(self, lhs, comparator, rhs, scope):
        self.lhs = ExprEvaluator(lhs, scope=scope)
        unresolved_vars = self.lhs.get_unresolved()

        if unresolved_vars:
            msg = "Left hand side of constraint '{0}' has invalid variables {1}"
            expression = ' '.join((lhs, comparator, rhs))

            raise ExprEvaluator._invalid_expression_error(unresolved_vars,
                                                          expr=expression,
                                                          msg=msg)
        self.rhs = ExprEvaluator(rhs, scope=scope)
        unresolved_vars = self.rhs.get_unresolved()

        if unresolved_vars:
            msg = "Right hand side of constraint '{0}' has invalid variables {1}"
            expression = ' '.join((lhs, comparator, rhs))

            raise ExprEvaluator._invalid_expression_error(unresolved_vars,
                                                          expr=expression,
                                                          msg=msg)
        self.comparator = comparator
        self.pcomp_name = None
        self._size = None

        # Linear flag: constraints are nonlinear by default
        self.linear = False

    @property
    def size(self):
        """Total scalar items in this constraint."""
        if self._size is None:
            self._size = len(self.evaluate(self.lhs.scope))
        return self._size

    def activate(self):
        """Make this constraint active by creating the appropriate
        connections in the dependency graph.
        """
        if self.pcomp_name is None:
            pseudo = PseudoComponent(self.lhs.scope,
                                     self._combined_expr(),
                                     pseudo_type='constraint')
            self.pcomp_name = pseudo.name
            self.lhs.scope.add(pseudo.name, pseudo)
        getattr(self.lhs.scope, pseudo.name).make_connections(self.lhs.scope)

    def deactivate(self):
        """Remove this constraint from the dependency graph and remove
        its pseudocomp from the scoping object.
        """
        if self.pcomp_name:
            scope = self.lhs.scope
            try:
                pcomp = getattr(scope, self.pcomp_name)
            except AttributeError:
                pass
            else:
                scope.remove(pcomp.name)
            finally:
                self.pcomp_name = None

    def _combined_expr(self):
        """Given a constraint object, take the lhs, operator, and
        rhs and combine them into a single expression by moving rhs
        terms over to the lhs.  For example,
        for the constraint 'C1.x < C2.y + 7', return the expression
        'C1.x - C2.y - 7'.  Depending on the direction of the operator,
        the sign of the expression may be flipped.  The final form of
        the constraint, when evaluated, will be considered to be satisfied
        if it evaluates to a value <= 0.
        """
        scope = self.lhs.scope

        if self.comparator.startswith('>'):
            first = self.rhs.text
            second = self.lhs.text
        else:
            first = self.lhs.text
            second = self.rhs.text

        first_zero = False
        try:
            f = float(first)
        except Exception:
            pass
        else:
            if f == 0:
                first_zero = True

        second_zero = False
        try:
            f = float(second)
        except Exception:
            pass
        else:
            if f == 0:
                second_zero = True

        if first_zero:
            newexpr = "-(%s)" % second
        elif second_zero:
            newexpr = "%s" % first
        else:
            newexpr = '%s-(%s)' % (first, second)

        return ExprEvaluator(newexpr, scope)

    def copy(self):
        """ Returns a copy of our self. """
        return Constraint(str(self.lhs),
                          self.comparator,
                          str(self.rhs),
                          scope=self.lhs.scope)

    def evaluate(self, scope):
        """Returns the value of the constraint as a sequence."""
        pcomp = getattr(scope, self.pcomp_name)
        val = pcomp.out0

        if isinstance(val, ndarray):
            return val.flatten()
        else:
            return [val]

    def evaluate_gradient(self, scope, stepsize=1.0e-6, wrt=None):
        """Returns the gradient of the constraint eq/ineq as a tuple of the
        form (lhs, rhs, comparator, is_violated)."""

        lhs = self.lhs.evaluate_gradient(scope=scope,
                                         stepsize=stepsize,
                                         wrt=wrt)
        if isinstance(self.rhs, float):
            rhs = 0.
        else:
            rhs = self.rhs.evaluate_gradient(scope=scope,
                                             stepsize=stepsize,
                                             wrt=wrt)

        return (lhs, rhs, self.comparator, not _ops[self.comparator](lhs, rhs))

    def get_referenced_compnames(self):
        """Returns a set of names of each component referenced by this
        constraint.
        """
        if isinstance(self.rhs, float):
            return self.lhs.get_referenced_compnames()
        else:
            return self.lhs.get_referenced_compnames().union(
                self.rhs.get_referenced_compnames())

    def get_referenced_varpaths(self, copy=True):
        """Returns a set of names of each component referenced by this
        constraint.
        """
        if isinstance(self.rhs, float):
            return self.lhs.get_referenced_varpaths(copy=copy)
        else:
            return self.lhs.get_referenced_varpaths(copy=copy).union(
                self.rhs.get_referenced_varpaths(copy=copy))

    def __str__(self):
        return ' '.join((str(self.lhs), self.comparator, str(self.rhs)))

    def __eq__(self, other):
        if not isinstance(other, Constraint):
            return False
        return (self.lhs, self.comparator, self.rhs) == \
               (other.lhs, other.comparator, other.rhs)
Esempio n. 11
0
class Constraint(object):
    """ Object that stores info for a single constraint. """
    def __init__(self, lhs, comparator, rhs, scaler, adder, scope=None):
        self.lhs = ExprEvaluator(lhs, scope=scope)
        if not self.lhs.check_resolve():
            raise ValueError("Constraint '%s' has an invalid left-hand-side." \
                              % ' '.join([lhs, comparator, rhs]))
        self.comparator = comparator
        self.rhs = ExprEvaluator(rhs, scope=scope)
        if not self.rhs.check_resolve():
            raise ValueError("Constraint '%s' has an invalid right-hand-side." \
                              % ' '.join([lhs, comparator, rhs]))

        if not isinstance(scaler, float):
            raise ValueError("Scaler parameter should be a float")
        self.scaler = scaler

        if scaler <= 0.0:
            raise ValueError("Scaler parameter should be a float > 0")

        if not isinstance(adder, float):
            raise ValueError("Adder parameter should be a float")
        self.adder = adder

    def copy(self):
        return Constraint(self.lhs.text,
                          self.comparator,
                          self.rhs.text,
                          self.scaler,
                          self.adder,
                          scope=self.lhs.scope)

    def evaluate(self, scope):
        """Returns a tuple of the form (lhs, rhs, comparator, is_violated)."""

        lhs = (self.lhs.evaluate(scope) + self.adder) * self.scaler
        rhs = (self.rhs.evaluate(scope) + self.adder) * self.scaler
        return (lhs, rhs, self.comparator, not _ops[self.comparator](lhs, rhs))

    def evaluate_gradient(self, scope, stepsize=1.0e-6, wrt=None):
        """Returns the gradient of the constraint eq/inep as a tuple of the
        form (lhs, rhs, comparator, is_violated)."""

        lhs = self.lhs.evaluate_gradient(scope=scope,
                                         stepsize=stepsize,
                                         wrt=wrt)
        for key, value in lhs.iteritems():
            lhs[key] = (value + self.adder) * self.scaler

        rhs = self.rhs.evaluate_gradient(scope=scope,
                                         stepsize=stepsize,
                                         wrt=wrt)
        for key, value in rhs.iteritems():
            rhs[key] = (value + self.adder) * self.scaler

        return (lhs, rhs, self.comparator, not _ops[self.comparator](lhs, rhs))

    def get_referenced_compnames(self):
        return self.lhs.get_referenced_compnames().union(
            self.rhs.get_referenced_compnames())

    def __str__(self):
        return ' '.join([self.lhs.text, self.comparator, self.rhs.text])

    def __eq__(self, other):
        if not isinstance(other, Constraint):
            return False
        return (self.lhs,self.comparator,self.rhs,self.scaler,self.adder) == \
               (other.lhs,other.comparator,other.rhs,other.scaler,other.adder)
class Constraint(object):
    """ Object that stores info for a single constraint. """

    def __init__(self, lhs, comparator, rhs, scope):
        self.lhs = ExprEvaluator(lhs, scope=scope)
        if not self.lhs.check_resolve():
            raise ValueError("Constraint '%s' has an invalid left-hand-side."
                              % ' '.join([lhs, comparator, rhs]))

        self.comparator = comparator

        self.rhs = ExprEvaluator(rhs, scope=scope)
        if not self.rhs.check_resolve():
            raise ValueError("Constraint '%s' has an invalid right-hand-side."
                              % ' '.join([lhs, comparator, rhs]))

        self.pcomp_name = None
        self._size = None

    @property
    def size(self):
        """Total scalar items in this constraint."""
        if self._size is None:
            self._size = len(self.evaluate(self.lhs.scope))
        return self._size

    def activate(self):
        """Make this constraint active by creating the appropriate
        connections in the dependency graph.
        """
        if self.pcomp_name is None:
            pseudo = PseudoComponent(self.lhs.scope, self._combined_expr(),
                                     pseudo_type='constraint')
            self.pcomp_name = pseudo.name
            self.lhs.scope.add(pseudo.name, pseudo)
        getattr(self.lhs.scope, pseudo.name).make_connections(self.lhs.scope)

    def deactivate(self):
        """Remove this constraint from the dependency graph and remove
        its pseudocomp from the scoping object.
        """
        if self.pcomp_name:
            scope = self.lhs.scope
            try:
                pcomp = getattr(scope, self.pcomp_name)
            except AttributeError:
                pass
            else:
                # pcomp.remove_connections(scope)
                # if hasattr(scope, pcomp.name):
                scope.remove(pcomp.name)
            finally:  
                self.pcomp_name = None

    def _combined_expr(self):
        """Given a constraint object, take the lhs, operator, and
        rhs and combine them into a single expression by moving rhs
        terms over to the lhs.  For example,
        for the constraint 'C1.x < C2.y + 7', return the expression
        'C1.x - C2.y - 7'.  Depending on the direction of the operator,
        the sign of the expression may be flipped.  The final form of
        the constraint, when evaluated, will be considered to be satisfied
        if it evaluates to a value <= 0.
        """
        scope = self.lhs.scope

        if self.comparator.startswith('>'):
            first = self.rhs.text
            second = self.lhs.text
        else:
            first = self.lhs.text
            second = self.rhs.text

        first_zero = False
        try:
            f = float(first)
        except Exception:
            pass
        else:
            if f == 0:
                first_zero = True

        second_zero = False
        try:
            f = float(second)
        except Exception:
            pass
        else:
            if f == 0:
                second_zero = True

        if first_zero:
            newexpr = "-(%s)" % second
        elif second_zero:
            newexpr = "%s" % first
        else:
            newexpr = '%s-(%s)' % (first, second)

        return ExprEvaluator(newexpr, scope)

    def copy(self):
        return Constraint(str(self.lhs), self.comparator, str(self.rhs),
                          scope=self.lhs.scope)

    def evaluate(self, scope):
        """Returns the value of the constraint as a sequence."""
        pcomp = getattr(scope, self.pcomp_name)
        if not pcomp.is_valid():
            pcomp.update_outputs(['out0'])
        val = pcomp.out0

        if isinstance(val, ndarray):
            return val.flatten()
        else:
            return [val]

    def evaluate_gradient(self, scope, stepsize=1.0e-6, wrt=None):
        """Returns the gradient of the constraint eq/ineq as a tuple of the
        form (lhs, rhs, comparator, is_violated)."""

        lhs = self.lhs.evaluate_gradient(scope=scope, stepsize=stepsize, wrt=wrt)
        if isinstance(self.rhs, float):
            rhs = 0.
        else:
            rhs = self.rhs.evaluate_gradient(scope=scope, stepsize=stepsize, wrt=wrt)

        return (lhs, rhs, self.comparator, not _ops[self.comparator](lhs, rhs))

    def get_referenced_compnames(self):
        """Returns a set of names of each component referenced by this
        constraint.
        """
        if isinstance(self.rhs, float):
            return self.lhs.get_referenced_compnames()
        else:
            return self.lhs.get_referenced_compnames().union(
                                            self.rhs.get_referenced_compnames())

    def get_referenced_varpaths(self, copy=True):
        """Returns a set of names of each component referenced by this
        constraint.
        """
        if isinstance(self.rhs, float):
            return self.lhs.get_referenced_varpaths(copy=copy)
        else:
            return self.lhs.get_referenced_varpaths(copy=copy).union(
                                    self.rhs.get_referenced_varpaths(copy=copy))

    def __str__(self):
        return ' '.join([str(self.lhs), self.comparator, str(self.rhs)])

    def __eq__(self, other):
        if not isinstance(other, Constraint):
            return False
        return (self.lhs, self.comparator, self.rhs) == \
               (other.lhs, other.comparator, other.rhs)