Esempio n. 1
0
    def test_deprecated_ks_component(self):
        # run same test as above, only with the deprecated component,
        # to ensure we get the warning and the correct answer.
        # self-contained, to be removed when class name goes away.
        from openmdao.components.ks_comp import KSComponent  # deprecated

        prob = Problem()
        prob.model = model = Group()

        model.add_subsystem('px', IndepVarComp(name="x", val=np.ones((2, ))))
        model.add_subsystem('comp', DoubleArrayComp())

        msg = "'KSComponent' has been deprecated. Use 'KSComp' instead."

        with assert_warning(DeprecationWarning, msg):
            model.add_subsystem('ks', KSComponent(width=2))

        model.connect('px.x', 'comp.x1')
        model.connect('comp.y2', 'ks.g')

        model.add_design_var('px.x')
        model.add_objective('comp.y1')
        model.add_constraint('ks.KS', upper=0.0)

        prob.setup(check=False)
        prob.run_driver()

        assert_rel_error(self, max(prob['comp.y2']), prob['ks.KS'][0])
Esempio n. 2
0
        def test_double_arraycomp(self):
            # Mainly testing an old bug in the array return for multiple arrays
            group = Group()
            group.add_subsystem('x_param1',
                                IndepVarComp('x1', np.ones((2))),
                                promotes=['x1'])
            group.add_subsystem('x_param2',
                                IndepVarComp('x2', np.ones((2))),
                                promotes=['x2'])
            mycomp = group.add_subsystem('mycomp',
                                         DoubleArrayComp(),
                                         promotes=['x1', 'x2', 'y1', 'y2'])

            prob = Problem()
            model = prob.model = group
            model.linear_solver = self.linear_solver_class()
            prob.set_solver_print(level=0)

            prob.setup(check=False, mode='fwd')
            prob.run_model()

            Jbase = mycomp.JJ
            of = ['y1', 'y2']
            wrt = ['x1', 'x2']

            J = prob.compute_totals(of=of, wrt=wrt, return_format='flat_dict')
            diff = np.linalg.norm(J['y1', 'x1'] - Jbase[0:2, 0:2])
            assert_near_equal(diff, 0.0, 1e-8)
            diff = np.linalg.norm(J['y1', 'x2'] - Jbase[0:2, 2:4])
            assert_near_equal(diff, 0.0, 1e-8)
            diff = np.linalg.norm(J['y2', 'x1'] - Jbase[2:4, 0:2])
            assert_near_equal(diff, 0.0, 1e-8)
            diff = np.linalg.norm(J['y2', 'x2'] - Jbase[2:4, 2:4])
            assert_near_equal(diff, 0.0, 1e-8)
Esempio n. 3
0
    def test_vector_bounds_inf(self):

        # make sure no overflow when there is no specified upper/lower bound and significatn scaling
        prob = om.Problem()
        model = prob.model

        model.add_subsystem('px', om.IndepVarComp(name="x", val=np.ones(
            (2, ))))
        comp = model.add_subsystem('comp', DoubleArrayComp())
        model.connect('px.x', 'comp.x1')

        model.add_design_var('px.x', ref=np.array([.1, 1e-6]))
        model.add_constraint('comp.y2', ref=np.array([.2, 2e-6]))

        prob.setup()

        desvars = model.get_design_vars()

        self.assertFalse(np.any(np.isinf(desvars['px.x']['upper'])))
        self.assertFalse(np.any(np.isinf(-desvars['px.x']['lower'])))

        responses = prob.model.get_responses()

        self.assertFalse(np.any(np.isinf(responses['comp.y2']['upper'])))
        self.assertFalse(np.any(np.isinf(-responses['comp.y2']['lower'])))
Esempio n. 4
0
    def test_vector_scaled_derivs(self):

        prob = om.Problem()
        model = prob.model

        model.add_subsystem('px', om.IndepVarComp(name="x", val=np.ones(
            (2, ))))
        comp = model.add_subsystem('comp', DoubleArrayComp())
        model.connect('px.x', 'comp.x1')

        model.add_design_var('px.x',
                             ref=np.array([2.0, 3.0]),
                             ref0=np.array([0.5, 1.5]))
        model.add_objective('comp.y1',
                            ref=np.array([[7.0, 11.0]]),
                            ref0=np.array([5.2, 6.3]))
        model.add_constraint('comp.y2',
                             lower=0.0,
                             upper=1.0,
                             ref=np.array([[2.0, 4.0]]),
                             ref0=np.array([1.2, 2.3]))

        prob.setup()
        prob.run_driver()

        with assert_warning(
                OMDeprecationWarning,
                "'global_names' is deprecated in calls to _compute_totals. Use 'use_abs_names' instead."
        ):
            derivs = prob.driver._compute_totals(of=['comp.y1'],
                                                 wrt=['px.x'],
                                                 global_names=True,
                                                 return_format='dict')

        oscale = np.array([1.0 / (7.0 - 5.2), 1.0 / (11.0 - 6.3)])
        iscale = np.array([2.0 - 0.5, 3.0 - 1.5])
        J = comp.JJ[0:2, 0:2]

        # doing this manually so that I don't inadvertantly make an error in the vector math in both the code and test.
        J[0, 0] *= oscale[0] * iscale[0]
        J[0, 1] *= oscale[0] * iscale[1]
        J[1, 0] *= oscale[1] * iscale[0]
        J[1, 1] *= oscale[1] * iscale[1]
        assert_near_equal(J, derivs['comp.y1']['px.x'], 1.0e-3)

        obj = prob.driver.get_objective_values()
        obj_base = np.array([(prob['comp.y1'][0] - 5.2) / (7.0 - 5.2),
                             (prob['comp.y1'][1] - 6.3) / (11.0 - 6.3)])
        assert_near_equal(obj['comp.y1'], obj_base, 1.0e-3)

        con = prob.driver.get_constraint_values()
        con_base = np.array([(prob['comp.y2'][0] - 1.2) / (2.0 - 1.2),
                             (prob['comp.y2'][1] - 2.3) / (4.0 - 2.3)])
        assert_near_equal(con['comp.y2'], con_base, 1.0e-3)
Esempio n. 5
0
    def test_vector_scaled_derivs(self):

        prob = Problem()
        prob.model = model = Group()

        model.add_subsystem('px', IndepVarComp(name="x", val=np.ones((2, ))))
        comp = model.add_subsystem('comp', DoubleArrayComp())
        model.connect('px.x', 'comp.x1')

        model.add_design_var('px.x',
                             ref=np.array([2.0, 3.0]),
                             ref0=np.array([0.5, 1.5]))
        model.add_objective('comp.y1',
                            ref=np.array([[7.0, 11.0]]),
                            ref0=np.array([5.2, 6.3]))
        model.add_constraint('comp.y2',
                             lower=0.0,
                             upper=1.0,
                             ref=np.array([[2.0, 4.0]]),
                             ref0=np.array([1.2, 2.3]))

        prob.setup(check=False)
        prob.run_driver()

        derivs = prob.driver._compute_totals(of=['comp.y1'],
                                             wrt=['px.x'],
                                             return_format='dict')

        oscale = np.array([1.0 / (7.0 - 5.2), 1.0 / (11.0 - 6.3)])
        iscale = np.array([2.0 - 0.5, 3.0 - 1.5])
        J = comp.JJ[0:2, 0:2]

        # doing this manually so that I don't inadvertantly make an error in the vector math in both the code and test.
        J[0, 0] *= oscale[0] * iscale[0]
        J[0, 1] *= oscale[0] * iscale[1]
        J[1, 0] *= oscale[1] * iscale[0]
        J[1, 1] *= oscale[1] * iscale[1]
        assert_rel_error(self, J, derivs['comp.y1']['px.x'], 1.0e-3)

        obj = prob.driver.get_objective_values()
        obj_base = np.array([(prob['comp.y1'][0] - 5.2) / (7.0 - 5.2),
                             (prob['comp.y1'][1] - 6.3) / (11.0 - 6.3)])
        assert_rel_error(self, obj['comp.y1'], obj_base, 1.0e-3)

        con = prob.driver.get_constraint_values()
        con_base = np.array([(prob['comp.y2'][0] - 1.2) / (2.0 - 1.2),
                             (prob['comp.y2'][1] - 2.3) / (4.0 - 2.3)])
        assert_rel_error(self, con['comp.y2'], con_base, 1.0e-3)
Esempio n. 6
0
    def test_basic_ks(self):
        prob = om.Problem()
        model = prob.model

        model.add_subsystem('px', om.IndepVarComp(name="x", val=np.ones((2, ))))
        model.add_subsystem('comp', DoubleArrayComp())
        model.add_subsystem('ks', om.KSComp(width=2))
        model.connect('px.x', 'comp.x1')
        model.connect('comp.y2', 'ks.g')

        model.add_design_var('px.x')
        model.add_objective('comp.y1')
        model.add_constraint('ks.KS', upper=0.0)

        prob.setup()
        prob.run_driver()

        assert_near_equal(max(prob['comp.y2']), prob['ks.KS'][0])
Esempio n. 7
0
    def test_basic_ks(self):
        prob = Problem()
        prob.model = model = Group()

        model.add_subsystem('px', IndepVarComp(name="x", val=np.ones((2, ))))
        model.add_subsystem('comp', DoubleArrayComp())
        model.add_subsystem('ks', KSComponent(width=2))
        model.connect('px.x', 'comp.x1')
        model.connect('comp.y2', 'ks.g')

        model.add_design_var('px.x')
        model.add_objective('comp.y1')
        model.add_constraint('ks.KS', upper=0.0)

        prob.setup(check=False)
        prob.run_driver()

        assert_rel_error(self, max(prob['comp.y2']), prob['ks.KS'])