Esempio n. 1
0
    def setUp(self):
        cat1 = Catalogue()
        cat1.end_year = 2000
        cat1.start_year = 1900
        cat1.data['eventID'] = [1.0, 2.0, 3.0]
        cat1.data['magnitude'] = np.array([1.0, 2.0, 3.0])

        cat2 = Catalogue()
        cat2.end_year = 1990
        cat2.start_year = 1910
        cat2.data['eventID'] = [1.0, 2.0, 3.0]
        cat2.data['magnitude'] = np.array([1.0, 2.0, 3.0])

        self.cat1 = cat1
        self.cat2 = cat2
Esempio n. 2
0
def get_catalogue_from_ses(fname, duration):
    """
    Converts a set of ruptures into an instance of
    :class:`openquake.hmtk.seismicity.catalogue.Catalogue`.

    :param fname:
        Name of the .csv file
    :param float duration:
        Duration [in years] of the SES
    :returns:
        A :class:`openquake.hmtk.seismicity.catalogue.Catalogue` instance
    """
    # Read the set of ruptures
    ses = pd.read_csv(fname, sep='\t', skiprows=1)
    if len(ses.columns) < 2:
        ses = pd.read_csv(fname, sep=',', skiprows=1)
    # Create an empty catalogue
    cat = Catalogue()
    # Set catalogue data
    cnt = 0
    year = []
    eventids = []
    mags = []
    lons = []
    lats = []
    deps = []
    print(ses['rup_id'])
    print('Columns:', ses.columns)
    for i in range(len(ses)):
        nevents = ses['multiplicity'][i]
        for j in range(nevents):
            eventids.append(':d'.format(cnt))
            mags.append(ses['mag'].values[i])
            lons.append(ses['centroid_lon'].values[i])
            lats.append(ses['centroid_lat'].values[i])
            deps.append(ses['centroid_depth'].values[i])
            cnt += 1
            year.append(numpy.random.random_integers(1, duration, 1))

    data = {}
    year = numpy.array(year, dtype=int)
    data['year'] = year
    data['month'] = numpy.ones_like(year, dtype=int)
    data['day'] = numpy.ones_like(year, dtype=int)
    data['hour'] = numpy.zeros_like(year, dtype=int)
    data['minute'] = numpy.zeros_like(year, dtype=int)
    data['second'] = numpy.zeros_like(year)
    data['magnitude'] = numpy.array(mags)
    data['longitude'] = numpy.array(lons)
    data['latitude'] = numpy.array(lats)
    data['depth'] = numpy.array(deps)
    data['eventID'] = eventids
    cat.data = data
    cat.end_year = duration
    cat.start_year = 0
    cat.data['dtime'] = cat.get_decimal_time()
    return cat
def from_df(df, end_year=None):
    cat = Catalogue()
    for column in df:
        if (column in Catalogue.FLOAT_ATTRIBUTE_LIST
                or column in Catalogue.INT_ATTRIBUTE_LIST):
            cat.data[column] = df[column].to_numpy()
        else:
            cat.data[column] = df[column]
    cat.end_year = np.max(df.year) if end_year is None else end_year
    return cat
Esempio n. 4
0
def from_df(df, end_year=None):
    """
    :param df:
        A :class:`pd.DataFrame` instance with the catalogue
    """
    cat = Catalogue()
    for column in df:
        if (column in Catalogue.FLOAT_ATTRIBUTE_LIST
                or column in Catalogue.INT_ATTRIBUTE_LIST):
            cat.data[column] = df[column].to_numpy()
        else:
            cat.data[column] = df[column]
    cat.end_year = np.max(df.year) if end_year is None else end_year
    return cat
Esempio n. 5
0
def from_df(df, end_year=None):
    """
    Converts a dataframe into a
    :class:`openquake.hmtk.seismicity.catalogue.Catalogue` instance

    :param df:
        The dataframe with the catalogue
    :returns:
        The catalogue instance
    """
    cat = Catalogue()
    for column in df:
        if (column in Catalogue.FLOAT_ATTRIBUTE_LIST
                or column in Catalogue.INT_ATTRIBUTE_LIST):
            cat.data[column] = df[column].to_numpy()
        else:
            cat.data[column] = df[column]
    cat.end_year = np.max(df.year) if end_year is None else end_year
    return cat