Esempio n. 1
0
def distance_to_Delta_l(distance, psi_r, x_r, y_r, x, y):

    psi_tmp = dy.atan2(y - y_r, x - x_r)
    delta_angle = dy.unwrap_angle(psi_r - psi_tmp, normalize_around_zero=True)
    sign = dy.conditional_overwrite(dy.float64(1.0),
                                    delta_angle > dy.float64(0), -1.0)
    Delta_l = distance * sign

    return Delta_l
def _distance_to_Delta_l( distance, psi_r, x_r, y_r, x, y ):
    """
        Add sign information to a closest distance measurement 
    """
    psi_tmp = dy.atan2(y - y_r, x - x_r)
    delta_angle = dy.unwrap_angle( psi_r - psi_tmp, normalize_around_zero=True )
    sign = dy.conditional_overwrite(dy.float64(1.0), delta_angle > dy.float64(0) ,  -1.0  )
    Delta_l = distance * sign

    return Delta_l
Esempio n. 3
0
def distance_to_line(x_s, y_s, x_e, y_e, x_test, y_test):
    """
        compute the shortest distance to a line

        returns a negative distance in case  (x_test, y_test) is to the left of the vector pointing from
        (x_s, y_s) to (x_e, y_e)
    """
    Delta_x = x_e - x_s
    Delta_y = y_e - y_s

    x_test_ = x_test - x_s
    y_test_ = y_test - y_s

    psi = dy.atan2(Delta_y, Delta_x)
    test_ang = dy.atan2(y_test_, x_test_)
    delta_angle = dy.unwrap_angle(test_ang - psi, normalize_around_zero=True)

    length_s_to_test = dy.sqrt(x_test_ * x_test_ + y_test_ * y_test_)

    distance = dy.sin(delta_angle) * length_s_to_test
    distance_s_to_projection = dy.cos(delta_angle) * length_s_to_test

    return distance, distance_s_to_projection
    path, x, y)

# reference for the lateral distance
Delta_l_r = dy.float64(0.0)  # zero in this example

dy.append_output(Delta_l_r, 'Delta_l_r')

# feedback control
u = dy.PID_controller(r=Delta_l_r, y=Delta_l, Ts=0.01, kp=k_p)

# path tracking
# resulting lateral model u --> Delta_l : 1/s
Delta_u = dy.asin(dy.saturate(u / velocity, -0.99, 0.99))
delta_star = psi_r - psi
steering = delta_star + Delta_u
steering = dy.unwrap_angle(angle=steering, normalize_around_zero=True)

dy.append_output(Delta_u, 'Delta_u')
dy.append_output(delta_star, 'delta_star')

#
# The model of the vehicle including a disturbance
#

# model the disturbance
disturbance_transient = np.concatenate(
    (cosra(50, 0, 1.0), co(10, 1.0), cosra(50, 1.0, 0)))
steering_disturbance, i = dy.play(
    disturbance_transient,
    start_trigger=dy.counter() == sample_disturbance,
    auto_start=False)
Esempio n. 5
0
def path_following(
        controller,
        par, 
        path, 
        x, y, psi, velocity, 
        Delta_l_r = 0.0, 
        Delta_l_r_dot = None, 
        psi_dot = None, 
        velocity_dot = None, 
        Delta_l_r_dotdot = None, 
        Ts=0.01
    ):
    """
        Basic steering control for path tracking and user-defined lateral error compensation
        
        Implements steering control for exact path following.
    
        Assumed is a kinematic bicycle model.
        Herein, the steering angle (delta) is the control variable. The variables
        x, y, psi, and velocity are measurements taken from the controlled system.
        The lateral offset Delta_l_r to the path is the reference for control.
        The optional signal Delta_l_r_dot describes the time derivative of Delta_l_r.
        
        controller - callback function that defines the error compensating controller
        par        - parameters that are passed to the callback
        Ts         - the sampling time

        Return values
        -------------

        results = {}
        results['x_r']                      # the current x-position of the closest point on the reference path
        results['y_r']                      # the current y-position of the closest point on the reference path
        results['v_star']                   # the current velocity of the closest point on the reference path
        results['d_star']                   # the current distance parameter of the closest point on the reference path
        results['psi_r']                    # the current path-tangent orientation angle in the closest point on the reference path
        results['psi_r_dot']                # the time derivative of psi_r
        results['Delta_l_r']                # the reference to the distance to the path
        results['Delta_l_r_dot']            # optional: the time derivative of Delta_l_r
        results['Delta_l']                  # the distance to the closest point on the reference path
        results['Delta_u']                  # small steering delta
        results['delta']                    # the requested steering angle / the control variable

        in case Delta_l_r_dot, psi_dot, velocity_dot, and Delta_l_r_dotdot are given
        the steering derivatives can be computed.

        results['Delta_u_dot']              # the derivative of Delta_u
        results['delta_dot']                # the derivative of delta_dot


    """
    index_head, _ = path_horizon_head_index(path)

    # structure for output signals
    results = dy.structure()

    # track the evolution of the closest point on the path to the vehicles position
    minimal_number_of_path_samples_to_start = 5 # depends on tracker(); should be at least 2
    with dy.sub_if( index_head > minimal_number_of_path_samples_to_start, subsystem_name='tracker' ) as system:

        tracking_results = tracker(path, x, y)

        system.set_outputs( tracking_results.to_list() )
    tracking_results.replace_signals( system.outputs )


    output_valid              = tracking_results['minimal_distance_reached']
    need_more_path_input_data = tracking_results['reached_the_end_of_currently_available_path_data']


    # in case the lookup was successful, run further operations on the path
    # to generate references and run the controller.
    with dy.sub_if( output_valid, prevent_output_computation=False, subsystem_name='controller') as system:

        # ps - path sample
        ps = track_projection_on_path(path, x, y, tracking_results = tracking_results)

        #
        # project the vehicle velocity onto the path yielding v_star 
        #
        # Used formula inside project_velocity_on_path:
        #   v_star = d d_star / dt = v * cos( Delta_u ) / ( 1 - Delta_l * K(d_star) ) 
        #

        Delta_u = dy.signal() # feedback from control
        v_star = project_velocity_on_path(velocity, Delta_u, ps['Delta_l'], ps['K_r'])


        #
        # compute an enhanced (less noise) signal for the path orientation psi_r by integrating the 
        # curvature profile and fusing the result with ps['psi_r'] to mitigate the integration drift.
        #

        psi_r, psi_r_dot = compute_path_orientation_from_curvature( Ts, v_star, ps['psi_r'], ps['K_r'], L=1.0 )


        #
        # controller callback
        #

        references = {
            'Delta_l_r'     : Delta_l_r,
            'Delta_l_r_dot' : Delta_l_r_dot,
            'Delta_l_r_dotdot' : Delta_l_r_dotdot
        }

        # Delta_l_dot might be further computed which improves the accuracy of the derivatives
        # in case of strong feedback control activity.  
        Delta_l_dot = None  # TODO: implement

        measurements = {
            'velocity'     : velocity,
            'velocity_dot' : velocity_dot,
            'psi'          : psi,
            'psi_dot'      : psi_dot,
            'Delta_l'      : ps['Delta_l'],
            'Delta_l_dot'  : Delta_l_dot
        }

        u, u_dot = controller( references, measurements, par )


        #
        # path tracking
        #
        # resulting lateral model u --> Delta_l : 1/s
        #

        Delta_u << dy.asin( dy.saturate(u / velocity, -0.99, 0.99) )
        delta = dy.unwrap_angle(angle=psi_r - psi + Delta_u, normalize_around_zero = True)

        # compute the derivatives of the steering angle (steering rate)
        if psi_dot is not None and Delta_l_r_dot is not None and velocity_dot is not None and Delta_l_r_dotdot is not None:

            Delta_u_dot = dy.cos( u / velocity ) * ( velocity * u_dot - velocity_dot * u ) / ( velocity*velocity )
            delta_dot = psi_r_dot - psi_dot + Delta_u_dot

            results['Delta_u_dot']       = Delta_u_dot
            results['delta_dot']         = delta_dot



        # collect resulting signals
        results['x_r']           = ps['x_r']      # the current x-position of the closest point on the reference path
        results['y_r']           = ps['y_r']      # the current y-position of the closest point on the reference path
        results['v_star']        = v_star         # the current velocity of the closest point on the reference path
        results['d_star']        = ps['d_star']   # the current distance parameter of the closest point on the reference path
        results['psi_r']         = psi_r          # the current path-tangent orientation angle in the closest point on the reference path
        results['K_r']           = ps['K_r']      # the curvature
        results['psi_r_dot']     = psi_r_dot      # the time derivative of psi_r

        results['Delta_u']       = Delta_u        # small steering delta
        results['delta']         = delta          # the requested steering angle / the control variable 

        results['Delta_l']       = ps['Delta_l']  # the distance to the closest point on the reference path
        results['Delta_l_dot']   = dy.float64(math.nan)  # d/dt Delta_l   TODO: implement


        # results['line_tracking_internals']  = ps['internals']


        # return
        system.set_outputs( results.to_list() )
    results.replace_signals( system.outputs )

    results['tracked_index'] = tracking_results['tracked_index']
    results['Delta_l_r']     = Delta_l_r      # the reference to the distance to the path

    results['need_more_path_input_data']     = need_more_path_input_data
    results['output_valid']                  = output_valid

    results['read_position']         = results['tracked_index'] + 1
    results['minimal_read_position'] = results['read_position'] - 100

    return results


#
# path tracking control
#
# Control of the lateral distance to the path can be performed via the augmented control
# variable u. 
#
# Herein, a linearization yielding the resulting lateral dynamics u --> Delta_l : 1/s is applied.
#

Delta_u << dy.asin( dy.saturate(u / velocity, -0.99, 0.99) )
delta_star = psi_r - psi
delta =  delta_star + Delta_u
delta = dy.unwrap_angle(angle=delta, normalize_around_zero = True)

dy.append_output(Delta_u, 'Delta_u')
dy.append_output(delta_star, 'delta_star')


#
# The model of the vehicle including a disturbance
#


# steering angle limit
delta = dy.saturate(u=delta, lower_limit=-math.pi/2.0, upper_limit=math.pi/2.0)

# the model of the vehicle
x_, y_, psi_, x_dot, y_dot, psi_dot = discrete_time_bicycle_model(delta, velocity, Ts, wheelbase)
def path_following_controller_P( path, x, y, psi, velocity, Delta_l_r = 0.0, Delta_l_r_dot = None, k_p=2.0, Ts=0.01, psi_dot = None, velocity_dot = None, Delta_l_r_dotdot = None, Delta_l_dot = None  ):
    """
        Basic steering control for path tracking using proportional lateral error compensation
        
        Path following steering control for exact path following and P-control to control the lateral 
        distance to the path are combined.
    
        Controlls a kinematic bicycle model (assumption) to follow the given path.
        Herein, the steering angle delta is the control variable. The variables
        x, y, psi, and velocity are measurements taken from the controlled system.
        The lateral offset Delta_l_r to the path is the reference. The optional
        signal Delta_l_r_dot describes the time derivative of Delta_l_r.
        
        Ts - the sampling time

        Return values
        -------------

        results = {}
        results['x_r']                      # the current x-position of the closest point on the reference path
        results['y_r']                      # the current y-position of the closest point on the reference path
        results['v_star']                   # the current velocity of the closest point on the reference path
        results['d_star']                   # the current distance parameter of the closest point on the reference path
        results['psi_r']                    # the current path-tangent orientation angle in the closest point on the reference path
        results['psi_r_dot']                # the time derivative of psi_r
        results['Delta_l_r']                # the reference to the distance to the path
        results['Delta_l_r_dot']            # optional: the time derivative of Delta_l_r
        results['Delta_l']                  # the distance to the closest point on the reference path
        results['Delta_u']                  # small steering delta
        results['delta']                    # the requested steering angle / the control variable

        in case Delta_l_r_dot, psi_dot, velocity_dot, and Delta_l_r_dotdot are given
        the steering derivatives can be computed.

        results['Delta_u_dot']              # the derivative of Delta_u
        results['delta_dot']                # the derivative of delta_dot

        Optionally, Delta_l_dot might be further given which improves the accuracy of the derivatives
        in case of strong feedback control activity.  

    """
    index_head, _ = path_horizon_head_index(path)

    # structure for output signals
    results = dy.structure()



    # track the evolution of the closest point on the path to the vehicles position
    with dy.sub_if( index_head > 10 ) as system:

        tracking_results = tracker(path, x, y)

        system.set_outputs( tracking_results.to_list() )

    tracking_results.replace_signals( system.outputs )


    output_valid              = tracking_results['minimal_distance_reached']
    need_more_path_input_data = tracking_results['reached_the_end_of_currently_available_path_data']


    # position_on_path_found = dy.boolean(True)

    with dy.sub_if( output_valid, prevent_output_computation=False, subsystem_name='controller') as system:

        # ps - path sample
        ps = track_projection_on_path(path, x, y, tracking_results = tracking_results)

        #
        # project the vehicle velocity onto the path yielding v_star 
        #
        # Used formula inside project_velocity_on_path:
        #   v_star = d d_star / dt = v * cos( Delta_u ) / ( 1 - Delta_l * K(d_star) ) 
        #

        Delta_u = dy.signal() # feedback from control
        v_star = project_velocity_on_path(velocity, Delta_u, ps['Delta_l'], ps['K_r'])


        #
        # compute an enhanced (less noise) signal for the path orientation psi_r by integrating the 
        # curvature profile and fusing the result with ps['psi_r'] to mitigate the integration drift.
        #

        psi_r, psi_r_dot = compute_path_orientation_from_curvature( Ts, v_star, ps['psi_r'], ps['K_r'], L=1.0 )
        
        # feedback control
        u_fb = k_p * (Delta_l_r - ps['Delta_l'])

        if Delta_l_r_dot is not None:
            u = Delta_l_r_dot + u_fb
        else:
            u = u_fb

        # path tracking
        # resulting lateral model u --> Delta_l : 1/s
        Delta_u << dy.asin( dy.saturate(u / velocity, -0.99, 0.99) )
        delta = dy.unwrap_angle(angle=psi_r - psi + Delta_u, normalize_around_zero = True)

        # compute the derivatives of the steering angle (steering rate)
        if psi_dot is not None and Delta_l_r_dot is not None and velocity_dot is not None and Delta_l_r_dotdot is not None:
            
            if Delta_l_dot is None:
                u_dot = Delta_l_r_dotdot # + 0 neglect numerical random walk error compensation 
            else:
                u_dot = Delta_l_r_dotdot + Delta_l_dot


            Delta_u_dot = dy.cos( u / velocity ) * ( velocity * u_dot - velocity_dot * u ) / ( velocity*velocity )
            delta_dot = psi_r_dot - psi_dot + Delta_u_dot

            results['Delta_u_dot']       = Delta_u_dot
            results['delta_dot']         = delta_dot



        # collect resulting signals
        results['x_r']           = ps['x_r']      # the current x-position of the closest point on the reference path
        results['y_r']           = ps['y_r']      # the current y-position of the closest point on the reference path
        results['v_star']        = v_star         # the current velocity of the closest point on the reference path
        results['d_star']        = ps['d_star']   # the current distance parameter of the closest point on the reference path
        results['psi_r']         = psi_r          # the current path-tangent orientation angle in the closest point on the reference path
        results['psi_r_dot']     = psi_r_dot      # the time derivative of psi_r
        results['Delta_l']       = ps['Delta_l']  # the distance to the closest point on the reference path
        results['Delta_u']       = Delta_u        # small steering delta
        results['delta']         = delta          # the requested steering angle / the control variable 


        # results['line_tracking_internals']  = ps['internals']


        # return
        system.set_outputs( results.to_list() )
    results.replace_signals( system.outputs )

    results['tracked_index'] = tracking_results['tracked_index']
    results['Delta_l_r']     = Delta_l_r      # the reference to the distance to the path

    results['need_more_path_input_data']     = need_more_path_input_data
    results['output_valid']                  = output_valid

    results['read_position']         = results['tracked_index'] + 1
    results['minimal_read_position'] = results['read_position'] - 100

    return results