Esempio n. 1
0
def undistort_reconstruction(tracks_manager, reconstruction, data, udata):
    urec = types.Reconstruction()
    urec.points = reconstruction.points
    utracks_manager = pysfm.TracksManager()
    logger.debug("Undistorting the reconstruction")
    undistorted_shots = {}
    for shot in reconstruction.shots.values():
        if shot.camera.projection_type == "perspective":
            camera = perspective_camera_from_perspective(shot.camera)
            urec.add_camera(camera)
            subshots = [get_shot_with_different_camera(urec, shot, camera)]
        elif shot.camera.projection_type == "brown":
            camera = perspective_camera_from_brown(shot.camera)
            urec.add_camera(camera)
            subshots = [get_shot_with_different_camera(urec, shot, camera)]
        elif shot.camera.projection_type in ["fisheye", "fisheye_opencv"]:
            camera = perspective_camera_from_fisheye(shot.camera)
            urec.add_camera(camera)
            subshots = [get_shot_with_different_camera(urec, shot, camera)]
        elif pygeometry.Camera.is_panorama(shot.camera.projection_type):
            subshot_width = int(data.config["depthmap_resolution"])
            subshots = perspective_views_of_a_panorama(shot, subshot_width,
                                                       urec)

        for subshot in subshots:
            if tracks_manager:
                add_subshot_tracks(tracks_manager, utracks_manager, shot,
                                   subshot)
        undistorted_shots[shot.id] = subshots

    udata.save_undistorted_reconstruction([urec])
    if tracks_manager:
        udata.save_undistorted_tracks_manager(utracks_manager)

    return undistorted_shots
Esempio n. 2
0
def compute_and_save_undistorted_reconstruction(reconstruction, tracks_manager, data, udata):
    urec = types.Reconstruction()
    utracks_manager = pysfm.TracksManager()
    undistorted_shots = []
    for shot in reconstruction.shots.values():
        if shot.camera.projection_type == 'perspective':
            ucamera = osfm_u.perspective_camera_from_perspective(shot.camera)
        elif shot.camera.projection_type == 'brown':
            ucamera = osfm_u.perspective_camera_from_brown(shot.camera)
        elif shot.camera.projection_type == 'fisheye':
            ucamera = osfm_u.perspective_camera_from_fisheye(shot.camera)
        else:
            raise ValueError
        urec.add_camera(ucamera)
        ushot = osfm_u.get_shot_with_different_camera(urec, shot, ucamera)
        if tracks_manager:
            osfm_u.add_subshot_tracks(tracks_manager, utracks_manager, shot, ushot)
        undistorted_shots.append(ushot)

        image = data.load_image(shot.id, unchanged=True, anydepth=True)
        if image is not None:
            max_size = data.config['undistorted_image_max_size']
            undistorted = osfm_u.undistort_image(shot, undistorted_shots, image,
                                                 cv2.INTER_AREA, max_size)
            for k, v in undistorted.items():
                udata.save_undistorted_image(k, v)

    udata.save_undistorted_reconstruction([urec])
    if tracks_manager:
        udata.save_undistorted_tracks_manager(utracks_manager)

    return urec
Esempio n. 3
0
def create_tracks_manager(features, colors, matches, config):
    """Link matches into tracks."""
    logger.debug('Merging features onto tracks')
    uf = UnionFind()
    for im1, im2 in matches:
        for f1, f2 in matches[im1, im2]:
            uf.union((im1, f1), (im2, f2))

    sets = {}
    for i in uf:
        p = uf[i]
        if p in sets:
            sets[p].append(i)
        else:
            sets[p] = [i]

    min_length = config['min_track_length']
    tracks = [t for t in sets.values() if _good_track(t, min_length)]
    logger.debug('Good tracks: {}'.format(len(tracks)))

    tracks_manager = pysfm.TracksManager()
    for track_id, track in enumerate(tracks):
        for image, featureid in track:
            if image not in features:
                continue
            x, y, s = features[image][featureid]
            r, g, b = colors[image][featureid]
            obs = pysfm.Observation(x, y, s, int(r), int(g), int(b), featureid)
            tracks_manager.add_observation(image, str(track_id), obs)
    return tracks_manager
def generate_track_data(reconstruction, maximum_depth, noise):
    tracks_manager = pysfm.TracksManager()

    feature_data_type = np.float32
    desc_size = 128
    non_zeroes = 5
    track_descriptors = {}
    for track_index in reconstruction.points:
        descriptor = np.zeros(desc_size)
        for i in range(non_zeroes):
            index = np.random.randint(0, desc_size)
            descriptor[index] = np.random.random()*255
        track_descriptors[track_index] = descriptor.round().\
            astype(feature_data_type)

    colors = {}
    features = {}
    descriptors = {}
    default_scale = 0.004
    for shot_index, shot in reconstruction.shots.items():
        # need to have these as we lost track of keys
        all_keys = list(reconstruction.points.keys())
        all_values = list(reconstruction.points.values())

        # temporary work on numpy array
        all_coordinates = [p.coordinates for p in all_values]
        projections = shot.project_many(np.array(all_coordinates))
        projections_inside = []
        descriptors_inside = []
        colors_inside = []
        for i, projection in enumerate(projections):
            if not _is_inside_camera(projection, shot.camera):
                continue
            original_key = all_keys[i]
            original_point = all_values[i]
            if not _is_in_front(original_point, shot):
                continue
            if not _check_depth(original_point, shot, maximum_depth):
                continue

            # add perturbation
            perturbation = float(noise)/float(max(shot.camera.width,
                                                  shot.camera.height))
            perturb_points([projection], np.array([perturbation, perturbation]))

            projections_inside.append(np.hstack((projection, [default_scale])))
            descriptors_inside.append(track_descriptors[original_key])
            colors_inside.append(original_point.color)
            obs = pysfm.Observation(
                projection[0], projection[1], default_scale,
                original_point.color[0], original_point.color[1],
                original_point.color[2], len(projections_inside) - 1)
            tracks_manager.add_observation(str(shot_index), str(original_key), obs)
        features[shot_index] = np.array(projections_inside)
        colors[shot_index] = np.array(colors_inside)
        descriptors[shot_index] = np.array(descriptors_inside)

    return features, descriptors, colors, tracks_manager
Esempio n. 5
0
def import_images_reconstruction(path_images, keypoints, rec):
    """
    Read images.bin, building shots and tracks graph
    """
    logger.info("Importing images from {}".format(path_images))
    tracks_manager = pysfm.TracksManager()
    image_ix_to_shot_id = {}
    with open(path_images, "rb") as f:
        n_ims = unpack("<Q", f.read(8))[0]
        for image_ix in range(n_ims):
            image_id = unpack("<I", f.read(4))[0]
            q0 = unpack("<d", f.read(8))[0]
            q1 = unpack("<d", f.read(8))[0]
            q2 = unpack("<d", f.read(8))[0]
            q3 = unpack("<d", f.read(8))[0]
            t0 = unpack("<d", f.read(8))[0]
            t1 = unpack("<d", f.read(8))[0]
            t2 = unpack("<d", f.read(8))[0]
            camera_id = unpack("<I", f.read(4))[0]
            filename = ""
            while True:
                c = f.read(1).decode()
                if c == "\0":
                    break
                filename += c
            q = np.array([q0, q1, q2, q3])
            q /= np.linalg.norm(q)
            t = np.array([t0, t1, t2])

            pose = pygeometry.Pose(rotation=quaternion_to_angle_axis(q),
                                   translation=t)
            shot = rec.create_shot(filename, str(camera_id), pose)
            image_ix_to_shot_id[image_ix] = shot.id

            n_points_2d = unpack("<Q", f.read(8))[0]
            for point2d_ix in range(n_points_2d):
                x = unpack("<d", f.read(8))[0]
                y = unpack("<d", f.read(8))[0]
                point3d_id = unpack("<Q", f.read(8))[0]
                if point3d_id != np.iinfo(np.uint64).max:
                    kp = keypoints[image_id][point2d_ix]
                    r, g, b = rec.points[str(point3d_id)].color
                    obs = pysfm.Observation(
                        x,
                        y,
                        kp[2],
                        int(r),
                        int(g),
                        int(b),
                        point2d_ix,
                    )
                    tracks_manager.add_observation(shot.id, str(point3d_id),
                                                   obs)

    return tracks_manager, image_ix_to_shot_id
Esempio n. 6
0
def undistort_reconstruction(tracks_manager, reconstruction, data: DataSetBase,
                             udata: UndistortedDataSet):
    image_format = data.config["undistorted_image_format"]
    urec = types.Reconstruction()
    urec.points = reconstruction.points
    rig_instance_count = itertools.count()
    utracks_manager = pysfm.TracksManager()
    logger.debug("Undistorting the reconstruction")
    undistorted_shots = {}
    for shot in reconstruction.shots.values():
        if shot.camera.projection_type == "perspective":
            camera = perspective_camera_from_perspective(shot.camera)
            urec.add_camera(camera)
            subshots = [
                get_shot_with_different_camera(urec, shot, camera,
                                               image_format)
            ]
        elif shot.camera.projection_type == "brown":
            camera = perspective_camera_from_brown(shot.camera)
            urec.add_camera(camera)
            subshots = [
                get_shot_with_different_camera(urec, shot, camera,
                                               image_format)
            ]
        elif shot.camera.projection_type in ["fisheye", "fisheye_opencv"]:
            camera = perspective_camera_from_fisheye(shot.camera)
            urec.add_camera(camera)
            subshots = [
                get_shot_with_different_camera(urec, shot, camera,
                                               image_format)
            ]
        elif pygeometry.Camera.is_panorama(shot.camera.projection_type):
            subshot_width = int(data.config["depthmap_resolution"])
            subshots = perspective_views_of_a_panorama(shot, subshot_width,
                                                       urec, image_format,
                                                       rig_instance_count)

        for subshot in subshots:
            if tracks_manager:
                add_subshot_tracks(tracks_manager, utracks_manager, shot,
                                   subshot)
        undistorted_shots[shot.id] = subshots

    udata.save_undistorted_reconstruction([urec])
    if tracks_manager:
        udata.save_undistorted_tracks_manager(utracks_manager)

    udata.save_undistorted_shot_ids({
        shot_id: [ushot.id for ushot in ushots]
        for shot_id, ushots in undistorted_shots.items()
    })

    return undistorted_shots
Esempio n. 7
0
    def undistort_reconstruction(self, tracks_manager, reconstruction, data,
                                 udata):
        urec = types.Reconstruction()
        urec.points = reconstruction.points
        utracks_manager = pysfm.TracksManager()
        logger.debug('Undistorting the reconstruction')
        undistorted_shots = {}
        for shot in reconstruction.shots.values():
            if shot.camera.projection_type == 'perspective':
                camera = perspective_camera_from_perspective(shot.camera)
                urec.add_camera(camera)
                subshots = [get_shot_with_different_camera(urec, shot, camera)]
            elif shot.camera.projection_type == 'brown':
                camera = perspective_camera_from_brown(shot.camera)
                urec.add_camera(camera)
                subshots = [get_shot_with_different_camera(urec, shot, camera)]
            elif shot.camera.projection_type in ['fisheye', 'fisheye_opencv']:
                camera = perspective_camera_from_fisheye(shot.camera)
                urec.add_camera(camera)
                subshots = [get_shot_with_different_camera(urec, shot, camera)]
            elif shot.camera.projection_type in [
                    'equirectangular', 'spherical'
            ]:
                subshot_width = int(data.config['depthmap_resolution'])
                subshots = perspective_views_of_a_panorama(
                    shot, subshot_width, urec)

            for subshot in subshots:
                if tracks_manager:
                    add_subshot_tracks(tracks_manager, utracks_manager, shot,
                                       subshot)
            undistorted_shots[shot.id] = subshots

        udata.save_undistorted_reconstruction([urec])
        if tracks_manager:
            udata.save_undistorted_tracks_manager(utracks_manager)

        arguments = []
        for shot in reconstruction.shots.values():
            arguments.append((shot, undistorted_shots[shot.id], data, udata))

        processes = data.config['processes']
        parallel_map(undistort_image_and_masks, arguments, processes)
Esempio n. 8
0
    def __init__(
        self,
        reconstruction: types.Reconstruction,
        projection_max_depth: float,
        projection_noise: float,
        gps_noise: Union[Dict[str, float], float],
        causal_gps_noise: bool,
        generate_projections: bool = True,
    ):
        self.reconstruction = reconstruction
        self.exifs = sg.generate_exifs(reconstruction,
                                       gps_noise,
                                       causal_gps_noise=causal_gps_noise)

        if generate_projections:
            (self.features, self.tracks_manager) = sg.generate_track_data(
                reconstruction, projection_max_depth, projection_noise)
        else:
            self.features = {}
            self.tracks_manager = pysfm.TracksManager()
Esempio n. 9
0
def create_tracks_manager(features, colors, segmentations, instances, matches,
                          config):
    """Link matches into tracks."""
    logger.debug("Merging features onto tracks")
    uf = UnionFind()
    for im1, im2 in matches:
        for f1, f2 in matches[im1, im2]:
            uf.union((im1, f1), (im2, f2))

    sets = {}
    for i in uf:
        p = uf[i]
        if p in sets:
            sets[p].append(i)
        else:
            sets[p] = [i]

    min_length = config["min_track_length"]
    tracks = [t for t in sets.values() if _good_track(t, min_length)]
    logger.debug("Good tracks: {}".format(len(tracks)))

    NO_VALUE = pysfm.Observation.NO_SEMANTIC_VALUE
    tracks_manager = pysfm.TracksManager()
    for track_id, track in enumerate(tracks):
        for image, featureid in track:
            if image not in features:
                continue
            x, y, s = features[image][featureid]
            r, g, b = colors[image][featureid]
            segmentation, instance = (
                segmentations[image][featureid]
                if image in segmentations else NO_VALUE,
                instances[image][featureid]
                if image in instances else NO_VALUE,
            )
            obs = pysfm.Observation(x, y, s, int(r), int(g), int(b), featureid,
                                    segmentation, instance)
            tracks_manager.add_observation(image, str(track_id), obs)
    return tracks_manager
Esempio n. 10
0
def test_track_triangulator_equirectangular():
    """Test triangulating tracks of spherical images."""
    tracks_manager = pysfm.TracksManager()
    tracks_manager.add_observation('im1', '1',
                                   pysfm.Observation(0, 0, 1.0, 0, 0, 0, 0))
    tracks_manager.add_observation('im2', '1',
                                   pysfm.Observation(-0.1, 0, 1.0, 0, 0, 0, 1))

    rec = io.reconstruction_from_json({
        "cameras": {
            "theta": {
                "projection_type": "equirectangular",
                "width": 800,
                "height": 400,
            }
        },
        "shots": {
            'im1': {
                "camera": "theta",
                "rotation": [0.0, 0.0, 0.0],
                "translation": [0.0, 0.0, 0.0],
            },
            'im2': {
                "camera": "theta",
                "rotation": [0, 0, 0.0],
                "translation": [-1, 0, 0.0],
            },
        },
        "points": {},
    })

    graph_inliers = nx.Graph()
    triangulator = reconstruction.TrackTriangulator(tracks_manager,
                                                    graph_inliers, rec)
    triangulator.triangulate('1', 0.01, 2.0)
    assert '1' in rec.points
    p = rec.points['1'].coordinates
    assert np.allclose(p, [0, 0, 1.3763819204711])
    assert len(graph_inliers.edges()) == 2
Esempio n. 11
0
def test_track_triangulator_spherical():
    """Test triangulating tracks of spherical images."""
    tracks_manager = pysfm.TracksManager()
    tracks_manager.add_observation("im1", "1", pysfm.Observation(0, 0, 1.0, 0, 0, 0, 0))
    tracks_manager.add_observation(
        "im2", "1", pysfm.Observation(-0.1, 0, 1.0, 0, 0, 0, 1)
    )

    rec = io.reconstruction_from_json(
        {
            "cameras": {
                "theta": {
                    "projection_type": "spherical",
                    "width": 800,
                    "height": 400,
                }
            },
            "shots": {
                "im1": {
                    "camera": "theta",
                    "rotation": [0.0, 0.0, 0.0],
                    "translation": [0.0, 0.0, 0.0],
                },
                "im2": {
                    "camera": "theta",
                    "rotation": [0, 0, 0.0],
                    "translation": [-1, 0, 0.0],
                },
            },
            "points": {},
        }
    )

    triangulator = reconstruction.TrackTriangulator(tracks_manager, rec)
    triangulator.triangulate("1", 0.01, 2.0)
    assert "1" in rec.points
    p = rec.points["1"].coordinates
    assert np.allclose(p, [0, 0, 1.3763819204711])
    assert len(rec.points["1"].get_observations()) == 2
Esempio n. 12
0
def generate_track_data(
    reconstruction: types.Reconstruction, maximum_depth: float, noise: float
) -> Tuple[Dict[str, np.ndarray], Dict[str, np.ndarray], Dict[str, np.ndarray],
           pysfm.TracksManager, ]:
    """Generate projection data from a reconstruction, considering a maximum
    viewing depth and gaussian noise added to the ideal projections.
    Returns feature/descriptor/color data per shot and a tracks manager object.
    """

    tracks_manager = pysfm.TracksManager()

    feature_data_type = np.float32
    desc_size = 128
    non_zeroes = 5

    points_ids = list(reconstruction.points)
    points_coordinates = [
        p.coordinates for p in reconstruction.points.values()
    ]
    points_colors = [p.color for p in reconstruction.points.values()]

    # generate random descriptors per point
    track_descriptors = []
    for _ in points_coordinates:
        descriptor = np.zeros(desc_size)
        for _ in range(non_zeroes):
            index = np.random.randint(0, desc_size)
            descriptor[index] = np.random.random() * 255
        track_descriptors.append(descriptor.round().astype(feature_data_type))

    # should speed-up projection queries
    points_tree = spatial.cKDTree(points_coordinates)

    colors = {}
    features = {}
    descriptors = {}
    default_scale = 0.004
    for shot_index, shot in reconstruction.shots.items():
        # query all closest points
        neighbors = list(
            sorted(
                points_tree.query_ball_point(shot.pose.get_origin(),
                                             maximum_depth)))

        # project them
        projections = shot.project_many(
            np.array([points_coordinates[c] for c in neighbors]))

        # shot constants
        center = shot.pose.get_origin()
        z_axis = shot.pose.get_rotation_matrix()[2]
        is_panorama = pygeometry.Camera.is_panorama(
            shot.camera.projection_type)
        perturbation = float(noise) / float(
            max(shot.camera.width, shot.camera.height))
        sigmas = np.array([perturbation, perturbation])

        # pre-generate random perturbations
        perturbations = np.random.normal(0.0, sigmas, (len(projections), 2))

        # run and check valid projections
        projections_inside = []
        descriptors_inside = []
        colors_inside = []
        for i, (p_id, projection) in enumerate(zip(neighbors, projections)):
            if not _is_inside_camera(projection, shot.camera):
                continue

            point = points_coordinates[p_id]
            if not is_panorama and not _is_in_front(point, center, z_axis):
                continue

            # add perturbation
            projection += perturbations[i]

            # push data
            color = points_colors[p_id]
            original_id = points_ids[p_id]
            projections_inside.append(
                [projection[0], projection[1], default_scale])
            descriptors_inside.append(track_descriptors[p_id])
            colors_inside.append(color)
            obs = pysfm.Observation(
                projection[0],
                projection[1],
                default_scale,
                color[0],
                color[1],
                color[2],
                len(projections_inside) - 1,
            )
            tracks_manager.add_observation(str(shot_index), str(original_id),
                                           obs)
        features[shot_index] = np.array(projections_inside)
        colors[shot_index] = np.array(colors_inside)
        descriptors[shot_index] = np.array(descriptors_inside)

    return features, descriptors, colors, tracks_manager