Esempio n. 1
0
    def fit(self, X, y, **fit_params):
        input_dimension = X.shape[1]
        if self.distribution is None:
            self.distribution = BuildDistribution(X)
        if self.enumerate == 'linear':
            enumerateFunction = ot.LinearEnumerateFunction(input_dimension)
        elif self.enumerate == 'hyperbolic':
            enumerateFunction = ot.HyperbolicAnisotropicEnumerateFunction(input_dimension, self.q)
        else:
            raise ValueError('enumerate should be "linear" or "hyperbolic"')
        polynomials = [ot.StandardDistributionPolynomialFactory(self.distribution.getMarginal(i)) for i in range(input_dimension)]
        productBasis = ot.OrthogonalProductPolynomialFactory(polynomials, enumerateFunction)
        adaptiveStrategy = ot.FixedStrategy(productBasis, enumerateFunction.getStrataCumulatedCardinal(self.degree))
        if self.sparse:
            projectionStrategy = ot.LeastSquaresStrategy(ot.LeastSquaresMetaModelSelectionFactory(ot.LARS(), ot.CorrectedLeaveOneOut()))
        else:
            projectionStrategy = ot.LeastSquaresStrategy(X, y.reshape(-1, 1))
        algo = ot.FunctionalChaosAlgorithm(X, y.reshape(-1, 1), self.distribution, adaptiveStrategy, projectionStrategy)
        algo.run()
        self._result = algo.getResult()
        output_dimension = self._result.getMetaModel().getOutputDimension()

        # sensitivity
        si = ot.FunctionalChaosSobolIndices(self._result)
        if output_dimension == 1:
            self.feature_importances_ = [si.getSobolIndex(i) for i in range(input_dimension)]
        else:
            self.feature_importances_ = [[0.0] * input_dimension] * output_dimension
            for k in range(output_dimension):
                for i in range(input_dimension):
                    self.feature_importances_[k][i] = si.getSobolIndex(i, k)
        self.feature_importances_ = np.array(self.feature_importances_)
        return self
Esempio n. 2
0
    def __init__(self, beta_coeff, idx_set, jpdf):
        self.beta_coeff = beta_coeff
        self.idx_set = idx_set
        self.jpdf = jpdf
        self.N = jpdf.getDimension()

        # get the distribution type of each random variable
        dist_types = []
        for i in range(self.N):
            dist_type = self.jpdf.getMarginal(i).getName()
            dist_types.append(dist_type)

        # create orthogonal univariate bases
        poly_collection = ot.PolynomialFamilyCollection(self.N)
        for i in range(self.N):
            pdf = jpdf.getDistributionCollection()[i]
            algo = ot.AdaptiveStieltjesAlgorithm(pdf)
            poly_collection[i] = ot.StandardDistributionPolynomialFactory(algo)

        # create multivariate basis
        multivariate_basis = ot.OrthogonalProductPolynomialFactory(
            poly_collection, ot.EnumerateFunction(self.N))
        # get enumerate function (multi-index handling)
        enum_func = multivariate_basis.getEnumerateFunction()
        # get epansion
        self.expansion = multivariate_basis.getSubBasis(
            transform_multi_index_set(idx_set, enum_func))
        # create openturns surrogate model
        sur_model = ot.FunctionCollection()
        for i in range(len(self.expansion)):
            multi = str(beta_coeff[i]) + '*x'
            help_function = ot.SymbolicFunction(['x'], [multi])
            sur_model.add(ot.ComposedFunction(help_function,
                                              self.expansion[i]))
        self.surrogate_model = np.sum(sur_model)
Esempio n. 3
0
    def _buildChaosAlgo(self, inputSample, outputSample):
        """
        Build the functional chaos algorithm without running it.
        """
        if self._distribution is None:
            # create default distribution : Uniform between min and max of the
            # input sample
            inputSample = ot.NumericalSample(inputSample)
            inputMin = inputSample.getMin()
            inputMin[0] = np.min(self._defectSizes)
            inputMax = inputSample.getMax()
            inputMax[0] = np.max(self._defectSizes)
            marginals = [
                ot.Uniform(inputMin[i], inputMax[i]) for i in range(self._dim)
            ]
            self._distribution = ot.ComposedDistribution(marginals)

        # put description of the inputSample into decription of the distribution
        self._distribution.setDescription(inputSample.getDescription())

        if self._adaptiveStrategy is None:
            # Create the adaptive strategy : default is fixed strategy of degree 5
            # with linear enumerate function
            polyCol = [0.] * self._dim
            for i in range(self._dim):
                polyCol[i] = ot.StandardDistributionPolynomialFactory(
                    self._distribution.getMarginal(i))

            enumerateFunction = ot.EnumerateFunction(self._dim)
            multivariateBasis = ot.OrthogonalProductPolynomialFactory(
                polyCol, enumerateFunction)
            # default degree is 3 (in __init__)
            indexMax = enumerateFunction.getStrataCumulatedCardinal(
                self._degree)
            self._adaptiveStrategy = ot.FixedStrategy(multivariateBasis,
                                                      indexMax)

        if self._projectionStrategy is None:
            # sparse polynomial chaos
            basis_sequence_factory = ot.LAR()
            fitting_algorithm = ot.KFold()
            approximation_algorithm = ot.LeastSquaresMetaModelSelectionFactory(
                basis_sequence_factory, fitting_algorithm)
            self._projectionStrategy = ot.LeastSquaresStrategy(
                inputSample, outputSample, approximation_algorithm)

        return ot.FunctionalChaosAlgorithm(inputSample, outputSample, \
                self._distribution, self._adaptiveStrategy, self._projectionStrategy)
Esempio n. 4
0
    def fit(self, X, y, **fit_params):
        """Fit Tensor regression model.

        Parameters
        ----------
        X : array-like, shape = (n_samples, n_features)
            Training data.
        y : array-like, shape = (n_samples, [n_output_dims])
            Target values.

        Returns
        -------
        self : returns an instance of self.

        """
        if len(X) == 0:
            raise ValueError(
                "Can not perform a tensor approximation with empty sample")
        # check data type is accurate
        if (len(np.shape(X)) != 2):
            raise ValueError("X has incorrect shape.")
        input_dimension = len(X[1])
        if (len(np.shape(y)) != 2):
            raise ValueError("y has incorrect shape.")
        if self.distribution is None:
            self.distribution = BuildDistribution(X)
        factoryCollection = [
            ot.OrthogonalUniVariateFunctionFamily(
                ot.OrthogonalUniVariatePolynomialFunctionFactory(
                    ot.StandardDistributionPolynomialFactory(
                        self.distribution.getMarginal(i))))
            for i in range(input_dimension)
        ]
        functionFactory = ot.OrthogonalProductFunctionFactory(
            factoryCollection)
        algo = ot.TensorApproximationAlgorithm(X, y, self.distribution,
                                               functionFactory,
                                               [self.nk] * input_dimension,
                                               self.max_rank)
        algo.run()
        self.result_ = algo.getResult()
        return self
# Create a distribution of dimension n
# for example n=3 with indpendent components
distribution = ot.ComposedDistribution(
    [ot.Normal(), ot.Uniform(), ot.Gamma(2.75, 1.0), ot.Beta(2.5, 1.0, -1.0, 2.0)])

# %%
# Prepare the input/output samples
sampleSize = 250
X = distribution.getSample(sampleSize)
Y = myModel(X)
dimension = X.getDimension()

# %%
# build the orthogonal basis
coll = [ot.StandardDistributionPolynomialFactory(distribution.getMarginal(i)) for i in range(dimension)]
enumerateFunction = ot.LinearEnumerateFunction(dimension)
productBasis = ot.OrthogonalProductPolynomialFactory(coll, enumerateFunction)

# %%
# create the algorithm
degree = 6
adaptiveStrategy = ot.FixedStrategy(
    productBasis, enumerateFunction.getStrataCumulatedCardinal(degree))
projectionStrategy = ot.LeastSquaresStrategy()
algo = ot.FunctionalChaosAlgorithm(X, Y, distribution, adaptiveStrategy, projectionStrategy)
algo.run()

# %%
# get the metamodel function
result = algo.getResult()
Esempio n. 6
0
import openturns as ot
from openturns.viewer import View

dim = 1
f = ot.SymbolicFunction(['x'], ['x*sin(x)'])
uniform = ot.Uniform(0.0, 10.0)
distribution = ot.ComposedDistribution([uniform] * dim)
factoryCollection = [
    ot.OrthogonalUniVariateFunctionFamily(
        ot.OrthogonalUniVariatePolynomialFunctionFactory(
            ot.StandardDistributionPolynomialFactory(uniform)))
] * dim
functionFactory = ot.OrthogonalProductFunctionFactory(factoryCollection)
size = 10
sampleX = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0]]
sampleY = f(sampleX)
nk = [5] * dim
maxRank = 1
algo = ot.TensorApproximationAlgorithm(sampleX, sampleY, distribution,
                                       functionFactory, nk, maxRank)
algo.run()
result = algo.getResult()
metamodel = result.getMetaModel()

graph = f.draw(0.0, 10.0)
graph.add(metamodel.draw(0.0, 10.0))
graph.add(ot.Cloud(sampleX, sampleY))
graph.setColors(['blue', 'red', 'black'])
graph.setLegends(['model', 'meta model', 'sample'])
graph.setLegendPosition('topleft')
graph.setTitle('y(x)=x*sin(x)')
# borehole
# dim = 8
# model = ot.SymbolicFunction(['rw', 'r', 'Tu', 'Hu', 'Tl', 'Hl', 'L', 'Kw'],
  #['(2*_pi*Tu*(Hu-Hl))/(ln(r/rw)*(1+(2*L*Tu)/(ln(r/rw)*rw^2*Kw)+Tu/Tl))'])
# coll = [ot.Normal(0.1, 0.0161812),
        # ot.LogNormal(7.71, 1.0056),
        # ot.Uniform(63070.0, 115600.0),
        # ot.Uniform(990.0, 1110.0),
        # ot.Uniform(63.1, 116.0),
        # ot.Uniform(700.0, 820.0),
        # ot.Uniform(1120.0, 1680.0),
        # ot.Uniform(9855.0, 12045.0)]

distribution = ot.ComposedDistribution(coll)
factoryCollection = [ot.OrthogonalUniVariateFunctionFamily(
    ot.OrthogonalUniVariatePolynomialFunctionFactory(ot.StandardDistributionPolynomialFactory(dist))) for dist in coll]


functionFactory = ot.OrthogonalProductFunctionFactory(factoryCollection)

size = 1000
X = distribution.getSample(size)
Y = model(X)


# ot.ResourceMap.Set('TensorApproximationAlgorithm-Method', 'RankM')

# n-d
nk = [10] * dim
maxRank = 5
algo = ot.TensorApproximationAlgorithm(
Esempio n. 8
0
# with:
#
# .. math::
#     v_j^{(i)} (x_j) = \sum_{k=1}^{n_j} \beta_{j,k}^{(i)} \phi_{j,k} (x_j)
#
# We should define :
#
#  - The family of univariate functions :math:`\phi_j`. We choose the orthogonal basis with respect to the marginal distribution measures.
#  - The maximal rank :math:`m`. Here value is set to 5
#  - The marginal degrees :math:`n_j`. Here we set the degrees to [4, 15, 3, 2]
#

# %%
factoryCollection = [
    ot.OrthogonalUniVariatePolynomialFunctionFactory(
        ot.StandardDistributionPolynomialFactory(_)) for _ in [E, F, L, I]
]
functionFactory = ot.OrthogonalProductFunctionFactory(factoryCollection)
nk = [4, 15, 3, 2]
maxRank = 1

# %%
# Finally we might launch the algorithm:

# %%
algo = ot.TensorApproximationAlgorithm(X_train, Y_train, myDistribution,
                                       functionFactory, nk, maxRank)
algo.run()
result = algo.getResult()
metamodel = result.getMetaModel()
Esempio n. 9
0
def alsace(func,
           N,
           jpdf,
           tol=1e-22,
           sample_type='R',
           limit_cond=5,
           max_fcalls=1000,
           seed=123,
           ed_file=None,
           ed_fevals_file=None,
           verbose=True,
           pce_dict={}):
    """
    ALSACE - Approximations via Lower-Set and Least-Squares-based Adaptive Chaos Expansions

    func: function to be approximated.
    N: number of parameters.
    jpdf: joint probability density function.
    limit_cond: maximum allowed condition number of tr(inv(D.T*D))
    sample_type: 'R'-random, 'L'-LHS
    seed: sampling seed
    tol, max_fcalls: exit criteria, self-explanatory.
    ed_file, ed_fevals_file: experimental design and corresponding evaluations

    'act': activated, i.e. already part of the approximation.
    'adm': admissible, i.e. candidates for the approximation's expansion.
    """

    if not pce_dict:  # if pce_dict is empty --> cold-start
        idx_act = []
        idx_act.append([0] * N)  # start with 0 multi-index
        idx_adm = []
        # set seed
        ot.RandomGenerator.SetSeed(seed)
        ed_size = 2 * N  # initial number of samples
        # initial experimental design and coresponding evaluations
        ed, ed_fevals = get_ed(func,
                               jpdf,
                               ed_size,
                               sample_type=sample_type,
                               knots=[],
                               values=[],
                               ed_file=ed_file,
                               ed_fevals_file=ed_fevals_file)
        global_error_indicator = 1.0  # give arbitrary sufficiently large value

        # get the distribution type of each random variable
        dist_types = []
        for i in range(N):
            dist_type = jpdf.getMarginal(i).getName()
            dist_types.append(dist_type)

        # create orthogonal univariate bases
        poly_collection = ot.PolynomialFamilyCollection(N)
        for i in range(N):
            pdf = jpdf.getDistributionCollection()[i]
            algo = ot.AdaptiveStieltjesAlgorithm(pdf)
            poly_collection[i] = ot.StandardDistributionPolynomialFactory(algo)

        # create multivariate basis
        mv_basis = ot.OrthogonalProductPolynomialFactory(
            poly_collection, ot.EnumerateFunction(N))
        # get enumerate function (multi-index handling)
        enum_func = mv_basis.getEnumerateFunction()

    else:  # get data from dictionary
        idx_act = pce_dict['idx_act']
        idx_adm = pce_dict['idx_adm']
        pce_coeff_act = pce_dict['pce_coeff_act']
        pce_coeff_adm = pce_dict['pce_coeff_adm']
        ed = pce_dict['ed']
        ed_fevals = pce_dict['ed_fevals']
        ed_size = len(ed_fevals)
        # compute local and global error indicators
        global_error_indicator = np.sum(np.array(pce_coeff_adm)**2)
        enum_func = pce_dict['enum_func']
        mv_basis = pce_dict['mv_basis']

    #
    while ed_size < max_fcalls and global_error_indicator > tol:
        # the index added last to the activated set is the one to be refined
        last_act_idx = idx_act[-1][:]
        # get admissible neighbors of the lastly added index
        adm_neighbors = admissible_neighbors(last_act_idx, idx_act)
        # update admissible indices
        idx_adm = idx_adm + adm_neighbors
        # get polynomial basis for the LS problem
        idx_ls = idx_act + idx_adm
        idx_ls_single = transform_multi_index_set(idx_ls, enum_func)
        ls_basis = mv_basis.getSubBasis(idx_ls_single)
        ls_basis_size = len(ls_basis)

        # construct the design matrix D and compute its QR decomposition
        D = get_design_matrix(ls_basis, ed)
        Q, R = sp.qr(D, mode='economic')
        # construct information matrix A= D^T*D
        A = np.matmul(D.T, D) / ed_size
        trAinv_test = np.sum(1. / np.linalg.eig(A)[0])
        trAinv = np.trace(np.linalg.inv(A))
        print('new trace ', trAinv_test)
        print('old trace ', trAinv)

        # If tr(A) becomes too large, enrich the ED until tr(A) becomes
        # acceptable or until ed_size reaches max_fcalls
        while (trAinv > limit_cond
               and ed_size < max_fcalls) or ed_size < ls_basis_size:
            # inform user
            if verbose:
                print('WARNING: tr(inv(A)) = ', trAinv)
                print('WARNING: cond(D) = ', np.linalg.cond(D))
                print("")
            # select new size for the ED
            if ls_basis_size > ed_size:
                ed_size = ls_basis_size + N
            elif ed_size + N > max_fcalls:
                ed_size = max_fcalls
            else:
                ed_size = ed_size + N
            # expand ED
            ed, ed_fevals = get_ed(func,
                                   jpdf,
                                   ed_size,
                                   sample_type=sample_type,
                                   knots=ed,
                                   values=ed_fevals,
                                   ed_file=ed_file,
                                   ed_fevals_file=ed_fevals_file)
            # construct the design matrix D and compute its QR decomposition
            D = get_design_matrix(ls_basis, ed)
            Q, R = sp.qr(D, mode='economic')
            # construct information matrix A= D^T*D
            A = np.matmul(D.T, D) / ed_size
            trAinv = np.trace(np.linalg.inv(A))

        # solve LS problem
        c = Q.T.dot(ed_fevals)
        pce_coeff_ls = sp.solve_triangular(R, c)

        # find the multi-index with the largest contribution, add it to idx_act
        # and delete it from idx_adm
        pce_coeff_act = pce_coeff_ls[:len(idx_act)].tolist()
        pce_coeff_adm = pce_coeff_ls[-len(idx_adm):].tolist()
        help_idx = np.argmax(np.abs(pce_coeff_adm))
        idx_add = idx_adm.pop(help_idx)
        pce_coeff_add = pce_coeff_adm.pop(help_idx)
        idx_act.append(idx_add)
        pce_coeff_act.append(pce_coeff_add)

    # store expansion data in dictionary
    pce_dict = {}
    pce_dict['idx_act'] = idx_act
    pce_dict['idx_adm'] = idx_adm
    pce_dict['pce_coeff_act'] = pce_coeff_act
    pce_dict['pce_coeff_adm'] = pce_coeff_adm
    pce_dict['ed'] = ed
    pce_dict['ed_fevals'] = ed_fevals
    pce_dict['enum_func'] = enum_func
    pce_dict['mv_basis'] = mv_basis

    return pce_dict
Esempio n. 10
0
    ot.Rayleigh(1.0),
    ot.Student(22.0),
    ot.Triangular(-1.0, 0.3, 1.0),
    ot.Uniform(-1.0, 1.0),
    ot.Uniform(-1.0, 3.0),
    ot.Weibull(1.0, 3.0),
    ot.Beta(1.0, 3.0, -1.0, 1.0),
    ot.Beta(0.5, 1.0, -1.0, 1.0),
    ot.Beta(0.5, 1.0, -2.0, 3.0),
    ot.Gamma(1.0, 3.0),
    ot.Arcsine()
]
for n in range(len(distributionCollection)):
    distribution = distributionCollection[n]
    name = distribution.getClassName()
    polynomialFactory = ot.StandardDistributionPolynomialFactory(
        ot.AdaptiveStieltjesAlgorithm(distribution))
    print("polynomialFactory(", name, "=", polynomialFactory, ")")
    for i in range(iMax):
        print(name, " polynomial(", i, ")=", clean(polynomialFactory.build(i)))
    roots = polynomialFactory.getRoots(iMax - 1)
    print(name, " polynomial(", iMax - 1, ") roots=", roots)
    nodes, weights = polynomialFactory.getNodesAndWeights(iMax - 1)
    print(name, " polynomial(", iMax - 1, ") nodes=", nodes, " and weights=",
          weights)
    M = ot.SymmetricMatrix(iMax)
    for i in range(iMax):
        pI = polynomialFactory.build(i)
        for j in range(i + 1):
            pJ = polynomialFactory.build(j)

            def kernel(x):
Esempio n. 11
0
    if dist_types[i] == 'Uniform':
        poly_collection[i] = ot.OrthogonalUniVariatePolynomialFamily(
            ot.LegendreFactory())
    elif dist_types[i] == 'Normal':
        poly_collection[i] = ot.OrthogonalUniVariatePolynomialFamily(
            ot.HermiteFactory())
    elif dist_types[i] == 'Beta':
        poly_collection[i] = ot.OrthogonalUniVariatePolynomialFamily(
            ot.JacobiFactory())
    elif dist_types[i] == 'Gamma':
        poly_collection[i] = ot.OrthogonalUniVariatePolynomialFamily(
            ot.LaguerreFactory())
    else:
        pdf = jpdf_ot.getDistributionCollection()[i]
        algo = ot.AdaptiveStieltjesAlgorithm(pdf)
        poly_collection[i] = ot.StandardDistributionPolynomialFactory(algo)

# create multivariate basis
mv_basis = ot.OrthogonalProductPolynomialFactory(poly_collection,
                                                 ot.EnumerateFunction(N))
# get enumerate function (multi-index handling)
enum_func = mv_basis.getEnumerateFunction()

max_fcalls = np.linspace(100, 1000, 10).tolist()
meanz = []
varz = []
cv_errz_rms = []
cv_errz_max = []
fcallz = []
# cross validation sample
np.random.seed(42)
Esempio n. 12
0
    def fit(self, X, y, **fit_params):
        """Fit PC regression model.

        Parameters
        ----------
        X : array-like, shape = (n_samples, n_features)
            Training data.
        y : array-like, shape = (n_samples, [n_output_dims])
            Target values.

        Returns
        -------
        self : returns an instance of self.

        """
        if len(X) == 0:
            raise ValueError(
                "Can not perform chaos expansion with empty sample")
        # check data type is accurate
        if (len(np.shape(X)) != 2):
            raise ValueError("X has incorrect shape.")
        input_dimension = len(X[1])
        if (len(np.shape(y)) != 2):
            raise ValueError("y has incorrect shape.")
        if self.distribution is None:
            self.distribution = ot.MetaModelAlgorithm.BuildDistribution(X)
        if self.enumeratef == 'linear':
            enumerateFunction = ot.LinearEnumerateFunction(input_dimension)
        elif self.enumeratef == 'hyperbolic':
            enumerateFunction = ot.HyperbolicAnisotropicEnumerateFunction(
                input_dimension, self.q)
        else:
            raise ValueError('enumeratef should be "linear" or "hyperbolic"')
        polynomials = [
            ot.StandardDistributionPolynomialFactory(
                self.distribution.getMarginal(i))
            for i in range(input_dimension)
        ]
        productBasis = ot.OrthogonalProductPolynomialFactory(
            polynomials, enumerateFunction)
        adaptiveStrategy = ot.FixedStrategy(
            productBasis,
            enumerateFunction.getStrataCumulatedCardinal(self.degree))
        if self.sparse:
            # Filter according to the sparse_fitting_algorithm key
            if self.sparse_fitting_algorithm == "cloo":
                fitting_algorithm = ot.CorrectedLeaveOneOut()
            else:
                fitting_algorithm = ot.KFold()
            # Define the correspondinding projection strategy
            projectionStrategy = ot.LeastSquaresStrategy(
                ot.LeastSquaresMetaModelSelectionFactory(
                    ot.LARS(), fitting_algorithm))
        else:
            projectionStrategy = ot.LeastSquaresStrategy(X, y)
        algo = ot.FunctionalChaosAlgorithm(X, y, self.distribution,
                                           adaptiveStrategy,
                                           projectionStrategy)
        algo.run()
        self.result_ = algo.getResult()
        output_dimension = self.result_.getMetaModel().getOutputDimension()

        # sensitivity
        si = ot.FunctionalChaosSobolIndices(self.result_)
        if output_dimension == 1:
            self.feature_importances_ = [
                si.getSobolIndex(i) for i in range(input_dimension)
            ]
        else:
            self.feature_importances_ = [[0.0] * input_dimension
                                         ] * output_dimension
            for k in range(output_dimension):
                for i in range(input_dimension):
                    self.feature_importances_[k][i] = si.getSobolIndex(i, k)
        self.feature_importances_ = np.array(self.feature_importances_)
        return self
Esempio n. 13
0
#    f(X_1, \dots, X_d) = \sum_{i=1}^m \prod_{j=1}^d v_j^{(i)} (x_j), \forall x \in \mathbb{R}^d
#   
# with:
#
# .. math::
#     v_j^{(i)} (x_j) = \sum_{k=1}^{n_j} \beta_{j,k}^{(i)} \phi_{j,k} (x_j)
#
# We should define :
#
#  - The family of univariate functions :math:`\phi_j`. We choose the orthogonal basis with respect to the marginal distribution measures.
#  - The maximal rank :math:`m`. Here value is set to 5
#  - The marginal degrees :math:`n_j`. Here we set the degrees to [4, 15, 3, 2]
#  

# %%
factoryCollection = [ot.OrthogonalUniVariatePolynomialFunctionFactory(ot.StandardDistributionPolynomialFactory(_)) for _ in [E,F,L,I]]
functionFactory = ot.OrthogonalProductFunctionFactory(factoryCollection)
nk = [4, 15, 3, 2]
maxRank = 1

# %%
# Finally we might launch the algorithm:

# %%
algo = ot.TensorApproximationAlgorithm(X_train, Y_train, myDistribution, functionFactory, nk, maxRank)
algo.run()
result = algo.getResult()
metamodel = result.getMetaModel()

# %%
# The `run` method has optimized the hyperparameters of the metamodel (:math:`\beta` coefficients). 
Esempio n. 14
0
    def train(self):
        self.input_dim = self.training_points[None][0][0].shape[1]
        x_train = ot.Sample(self.training_points[None][0][0])
        y_train = ot.Sample(self.training_points[None][0][1])

        # Distribution choice of the inputs to Create the input distribution
        distributions = []
        dist_specs = self.options["uncertainty_specs"]
        if dist_specs:
            if len(dist_specs) != self.input_dim:
                raise SurrogateOpenturnsException(
                    "Number of distributions should be equal to input \
                        dimensions. Should be {}, got {}".format(
                        self.input_dim, len(dist_specs)
                    )
                )
            for ds in dist_specs:
                dist_klass = getattr(sys.modules["openturns"], ds["name"])
                args = [ds["kwargs"][name] for name in DISTRIBUTION_SIGNATURES[ds["name"]]]
                distributions.append(dist_klass(*args))
        else:
            for i in range(self.input_dim):
                mean = np.mean(x_train[:, i])
                lower, upper = 0.95 * mean, 1.05 * mean
                if mean < 0:
                    lower, upper = upper, lower
                distributions.append(ot.Uniform(lower, upper))

        distribution = ot.ComposedDistribution(distributions)

        # Polynomial basis
        # step 1 - Construction of the multivariate orthonormal basis:
        # Build orthonormal or orthogonal univariate polynomial families
        # (associated to associated input distribution)
        polynoms = [0.0] * self.input_dim
        for i in range(distribution.getDimension()):
            polynoms[i] = ot.StandardDistributionPolynomialFactory(
                distribution.getMarginal(i)
            )
        enumerateFunction = ot.LinearEnumerateFunction(self.input_dim)
        productBasis = ot.OrthogonalProductPolynomialFactory(
            polynoms, enumerateFunction
        )

        # step 2 - Truncation strategy of the multivariate orthonormal basis:
        # a strategy must be chosen for the selection of the different terms
        # of the multivariate basis.
        # Truncature strategy of the multivariate orthonormal basis
        # We choose all the polynomials of degree <= degree
        degree = self.options["pce_degree"]
        index_max = enumerateFunction.getStrataCumulatedCardinal(degree)
        adaptive_strategy = ot.FixedStrategy(productBasis, index_max)

        basis_sequenceFactory = ot.LARS()
        fitting_algorithm = ot.CorrectedLeaveOneOut()
        approximation_algorithm = ot.LeastSquaresMetaModelSelectionFactory(
            basis_sequenceFactory, fitting_algorithm
        )
        projection_strategy = ot.LeastSquaresStrategy(
            x_train, y_train, approximation_algorithm
        )

        algo = ot.FunctionalChaosAlgorithm(
            x_train, y_train, distribution, adaptive_strategy, projection_strategy
        )
        # algo = ot.FunctionalChaosAlgorithm(X_train_NS, Y_train_NS)
        algo.run()
        self._pce_result = algo.getResult()
Esempio n. 15
0
# model = ot.SymbolicFunction(['rw', 'r', 'Tu', 'Hu', 'Tl', 'Hl', 'L', 'Kw'],
# ['(2*pi_*Tu*(Hu-Hl))/(ln(r/rw)*(1+(2*L*Tu)/(ln(r/rw)*rw^2*Kw)+Tu/Tl))'])
# coll = [ot.Normal(0.1, 0.0161812),
# ot.LogNormal(7.71, 1.0056),
# ot.Uniform(63070.0, 115600.0),
# ot.Uniform(990.0, 1110.0),
# ot.Uniform(63.1, 116.0),
# ot.Uniform(700.0, 820.0),
# ot.Uniform(1120.0, 1680.0),
# ot.Uniform(9855.0, 12045.0)]

distribution = ot.ComposedDistribution(coll)
factoryCollection = [
    ot.OrthogonalUniVariateFunctionFamily(
        ot.OrthogonalUniVariatePolynomialFunctionFactory(
            ot.StandardDistributionPolynomialFactory(dist))) for dist in coll
]

functionFactory = ot.OrthogonalProductFunctionFactory(factoryCollection)

size = 1000
X = distribution.getSample(size)
Y = model(X)

# ot.ResourceMap.Set('TensorApproximationAlgorithm-Method', 'RankM')

# n-d
nk = [10] * dim
maxRank = 5
algo = ot.TensorApproximationAlgorithm(X, Y, distribution, functionFactory, nk,
                                       maxRank)
Esempio n. 16
0
    def __init__(self, strategy, degree, distributions, N_quad=None, sample=None,
                 stieltjes=True, sparse_param={}):
        """Generate truncature and projection strategies.

        Allong with the strategies the sample is storred as an attribute.
        :attr:`sample` as well as corresponding weights: :attr:`weights`.

        :param str strategy: Least square or Quadrature ['LS', 'Quad', 'SparseLS'].
        :param int degree: Polynomial degree.
        :param  distributions: Distributions of each input parameter.
        :type distributions: lst(:class:`openturns.Distribution`)
        :param array_like sample: Samples for least square
          (n_samples, n_features).
        :param bool stieltjes: Wether to use Stieltjes algorithm for the basis.
        :param dict sparse_param: Parameters for the Sparse Cleaning Truncation
          Strategy and/or hyperbolic truncation of the initial basis.

            - **max_considered_terms** (int) -- Maximum Considered Terms,
            - **most_significant** (int), Most Siginificant number to retain,
            - **significance_factor** (float), Significance Factor,
            - **hyper_factor** (float), factor for hyperbolic truncation
              strategy.
        """
        # distributions
        self.in_dim = len(distributions)
        self.dist = ot.ComposedDistribution(distributions)
        self.sparse_param = sparse_param

        if 'hyper_factor' in self.sparse_param:
            enumerateFunction = ot.EnumerateFunction(self.in_dim, self.sparse_param['hyper_factor'])
        else:
            enumerateFunction = ot.EnumerateFunction(self.in_dim)

        if stieltjes:
            # Tend to result in performance issue
            self.basis = ot.OrthogonalProductPolynomialFactory(
                [ot.StandardDistributionPolynomialFactory(
                    ot.AdaptiveStieltjesAlgorithm(marginal))
                 for marginal in distributions], enumerateFunction)
        else:
            self.basis = ot.OrthogonalProductPolynomialFactory(
                [ot.StandardDistributionPolynomialFactory(margin)
                 for margin in distributions], enumerateFunction)

        self.n_basis = enumerateFunction.getStrataCumulatedCardinal(degree)

        # Strategy choice for expansion coefficient determination
        self.strategy = strategy
        if self.strategy == 'LS' or self.strategy == 'SparseLS':  # least-squares method
            self.sample = sample
        else:  # integration method
            # redefinition of sample size
            # n_samples = (degree + 1) ** self.in_dim
            # marginal degree definition
            # by default: the marginal degree for each input random
            # variable is set to the total polynomial degree 'degree'+1
            measure = self.basis.getMeasure()

            if N_quad is not None:
                degrees = [int(N_quad ** 0.25)] * self.in_dim
            else:
                degrees = [degree + 1] * self.in_dim

            self.proj_strategy = ot.IntegrationStrategy(
                ot.GaussProductExperiment(measure, degrees))
            self.sample, self.weights = self.proj_strategy.getExperiment().generateWithWeights()

            if not stieltjes:
                transformation = ot.Function(ot.MarginalTransformationEvaluation(
                    [measure.getMarginal(i) for i in range(self.in_dim)],
                    distributions, False))
                self.sample = transformation(self.sample)

        self.pc = None
        self.pc_result = None
Esempio n. 17
0
 def fit(self, X, y, **fit_params):
     input_dimension = X.shape[1]
     if self.distribution is None:
         self.distribution = BuildDistribution(X)
     factoryCollection = [ot.OrthogonalUniVariateFunctionFamily(        ot.OrthogonalUniVariatePolynomialFunctionFactory(ot.StandardDistributionPolynomialFactory(self.distribution.getMarginal(i)))) for i in range(input_dimension)]
     functionFactory = ot.OrthogonalProductFunctionFactory(factoryCollection)
     algo = ot.TensorApproximationAlgorithm(X, y.reshape(-1, 1), self.distribution, functionFactory, [self.nk]*input_dimension, self.max_rank)
     algo.run()
     self._result = algo.getResult()
     return self
Esempio n. 18
0
def dali_pce(func,
             N,
             jpdf_cp,
             jpdf_ot,
             tol=1e-12,
             max_fcalls=1000,
             verbose=True,
             interp_dict={}):

    if not interp_dict:  # if dictionary is empty --> cold-start
        idx_act = []  # M_activated x N
        idx_adm = []  # M_admissible x N
        fevals_act = []  # M_activated x 1
        fevals_adm = []  # M_admissible x 1
        coeff_act = []  # M_activated x 1
        coeff_adm = []  #  M_admissible x 1

        # start with 0 multi-index
        knot0 = []
        for n in range(N):
            # get knots per dimension based on maximum index
            kk, ww = seq_lj_1d(order=0, dist=jpdf_cp[n])
            knot0.append(kk[0])
        feval = func(knot0)

        # update activated sets
        idx_act.append([0] * N)
        coeff_act.append(feval)
        fevals_act.append(feval)

        # local error indicators
        local_error_indicators = np.abs(coeff_act)

        # get the OT distribution type of each random variable
        dist_types = []
        for i in range(N):
            dist_type = jpdf_ot.getMarginal(i).getName()
            dist_types.append(dist_type)

        # create orthogonal univariate bases
        poly_collection = ot.PolynomialFamilyCollection(N)
        for i in range(N):
            if dist_types[i] == 'Uniform':
                poly_collection[i] = ot.OrthogonalUniVariatePolynomialFamily(
                    ot.LegendreFactory())
            elif dist_types[i] == 'Normal':
                poly_collection[i] = ot.OrthogonalUniVariatePolynomialFamily(
                    ot.HermiteFactory())
            elif dist_types[i] == 'Beta':
                poly_collection[i] = ot.OrthogonalUniVariatePolynomialFamily(
                    ot.JacobiFactory())
            elif dist_types[i] == 'Gamma':
                poly_collection[i] = ot.OrthogonalUniVariatePolynomialFamily(
                    ot.LaguerreFactory())
            else:
                pdf = jpdf_ot.getDistributionCollection()[i]
                algo = ot.AdaptiveStieltjesAlgorithm(pdf)
                poly_collection[i] = ot.StandardDistributionPolynomialFactory(
                    algo)

        # create multivariate basis
        mv_basis = ot.OrthogonalProductPolynomialFactory(
            poly_collection, ot.EnumerateFunction(N))
        # get enumerate function (multi-index handling)
        enum_func = mv_basis.getEnumerateFunction()

    else:
        idx_act = interp_dict['idx_act']
        idx_adm = interp_dict['idx_adm']
        coeff_act = interp_dict['coeff_act']
        coeff_adm = interp_dict['coeff_adm']
        fevals_act = interp_dict['fevals_act']
        fevals_adm = interp_dict['fevals_adm']
        mv_basis = interp_dict['mv_basis']
        enum_func = interp_dict['enum_func']
        # local error indicators
        local_error_indicators = np.abs(coeff_adm)

    # compute global error indicator
    global_error_indicator = local_error_indicators.sum()  # max or sum

    # fcalls / M approx. terms up to now
    fcalls = len(idx_act) + len(idx_adm)  # fcalls = M --> approx. terms

    # maximum index per dimension
    max_idx_per_dim = np.max(idx_act + idx_adm, axis=0)

    # univariate knots and polynomials per dimension
    knots_per_dim = {}
    for n in range(N):
        kk, ww = seq_lj_1d(order=max_idx_per_dim[n], dist=jpdf_cp[n])
        knots_per_dim[n] = kk

    # start iterations
    while global_error_indicator > tol and fcalls < max_fcalls:
        if verbose:
            print(fcalls)
            print(global_error_indicator)

        # the index added last to the activated set is the one to be refined
        last_act_idx = idx_act[-1][:]
        # compute the knot corresponding to the lastly added index
        last_knot = [
            knots_per_dim[n][i] for n, i in zip(range(N), last_act_idx)
        ]
        # get admissible neighbors of the lastly added index
        adm_neighbors = admissible_neighbors(last_act_idx, idx_act)

        for an in adm_neighbors:
            # update admissible index set
            idx_adm.append(an)
            # find which parameter/direction n (n=1,2,...,N) gets refined
            n_ref = np.argmin(
                [idx1 == idx2 for idx1, idx2 in zip(an, last_act_idx)])
            # sequence of 1d Leja nodes/weights for the given refinement
            knots_n, weights_n = seq_lj_1d(an[n_ref], jpdf_cp[int(n_ref)])

            # update max_idx_per_dim, knots_per_dim, if necessary
            if an[n_ref] > max_idx_per_dim[n_ref]:
                max_idx_per_dim[n_ref] = an[n_ref]
                knots_per_dim[n_ref] = knots_n

            # find new_knot and compute function on new_knot
            new_knot = last_knot[:]
            new_knot[n_ref] = knots_n[-1]
            feval = func(new_knot)
            fevals_adm.append(feval)
            fcalls += 1  # update function calls

        # create PCE basis
        idx_system = idx_act + idx_adm
        idx_system_single = transform_multi_index_set(idx_system, enum_func)
        system_basis = mv_basis.getSubBasis(idx_system_single)
        # get corresponding evaluations
        fevals_system = fevals_act + fevals_adm
        # multi-dimensional knots
        M = len(idx_system)  # equations terms
        knots_md = [[knots_per_dim[n][idx_system[m][n]] for m in range(M)]
                    for n in range(N)]
        knots_md = np.array(knots_md).T
        # design matrix
        D = get_design_matrix(system_basis, knots_md)
        # solve system of equaations
        Q, R = scl.qr(D, mode='economic')
        c = Q.T.dot(fevals_system)
        coeff_system = scl.solve_triangular(R, c)

        # find the multi-index with the largest contribution, add it to idx_act
        # and delete it from idx_adm
        coeff_act = coeff_system[:len(idx_act)].tolist()
        coeff_adm = coeff_system[-len(idx_adm):].tolist()
        help_idx = np.argmax(np.abs(coeff_adm))
        idx_add = idx_adm.pop(help_idx)
        pce_coeff_add = coeff_adm.pop(help_idx)
        fevals_add = fevals_adm.pop(help_idx)
        idx_act.append(idx_add)
        coeff_act.append(pce_coeff_add)
        fevals_act.append(fevals_add)
        # re-compute coefficients of admissible multi-indices

        # local error indicators
        local_error_indicators = np.abs(coeff_adm)
        # compute global error indicator
        global_error_indicator = local_error_indicators.sum()  # max or sum

    # store expansion data in dictionary
    interp_dict = {}
    interp_dict['idx_act'] = idx_act
    interp_dict['idx_adm'] = idx_adm
    interp_dict['coeff_act'] = coeff_act
    interp_dict['coeff_adm'] = coeff_adm
    interp_dict['fevals_act'] = fevals_act
    interp_dict['fevals_adm'] = fevals_adm
    interp_dict['enum_func'] = enum_func
    interp_dict['mv_basis'] = mv_basis
    return interp_dict
Esempio n. 19
0
polyColl = ot.PolynomialFamilyCollection(inputDimension)

# %%
# We could use the Krawtchouk and Charlier families (for discrete distributions).

# %%
polyColl[0] = ot.KrawtchoukFactory()
polyColl[1] = ot.CharlierFactory()

# %%
# We could also use the automatic selection of the polynomial which corresponds to the distribution: this is done with the `StandardDistributionPolynomialFactory` class.

# %%
for i in range(inputDimension):
    marginal = distribution.getMarginal(i)
    polyColl[i] = ot.StandardDistributionPolynomialFactory(marginal)

# %%
# In our specific case, we use specific polynomial factories.

# %%
polyColl[0] = ot.HermiteFactory()
polyColl[1] = ot.LegendreFactory()
polyColl[2] = ot.LaguerreFactory(2.75)
# Parameter for the Jacobi factory : 'Probabilty' encoded with 1
polyColl[3] = ot.JacobiFactory(2.5, 3.5, 1)

# %%
# Create the enumeration function.

# %%
Esempio n. 20
0
    ot.Uniform(),
    ot.Gamma(2.75, 1.0),
    ot.Beta(2.5, 1.0, -1.0, 2.0)
])

# %%
# Prepare the input/output samples
sampleSize = 250
X = distribution.getSample(sampleSize)
Y = myModel(X)
dimension = X.getDimension()

# %%
# build the orthogonal basis
coll = [
    ot.StandardDistributionPolynomialFactory(distribution.getMarginal(i))
    for i in range(dimension)
]
enumerateFunction = ot.LinearEnumerateFunction(dimension)
productBasis = ot.OrthogonalProductPolynomialFactory(coll, enumerateFunction)

# %%
# create the algorithm
degree = 6
adaptiveStrategy = ot.FixedStrategy(
    productBasis, enumerateFunction.getStrataCumulatedCardinal(degree))
projectionStrategy = ot.LeastSquaresStrategy()
algo = ot.FunctionalChaosAlgorithm(X, Y, distribution, adaptiveStrategy,
                                   projectionStrategy)
algo.run()
Esempio n. 21
0
#['(2*_pi*Tu*(Hu-Hl))/(ln(r/rw)*(1+(2*L*Tu)/(ln(r/rw)*rw^2*Kw)+Tu/Tl))'])
# coll = [ot.Normal(0.1, 0.0161812),
# ot.LogNormal(7.71, 1.0056),
# ot.Uniform(63070.0, 115600.0),
# ot.Uniform(990.0, 1110.0),
# ot.Uniform(63.1, 116.0),
# ot.Uniform(700.0, 820.0),
# ot.Uniform(1120.0, 1680.0),
# ot.Uniform(9855.0, 12045.0)]

distribution = ot.ComposedDistribution(coll)
factoryCollection = list(
    map(
        lambda dist: ot.OrthogonalUniVariateFunctionFamily(
            ot.OrthogonalUniVariatePolynomialFunctionFactory(
                ot.StandardDistributionPolynomialFactory(dist))), coll))

functionFactory = ot.OrthogonalProductFunctionFactory(factoryCollection)

size = 1000
X = distribution.getSample(size)
Y = model(X)

# ot.ResourceMap.Set('TensorApproximationAlgorithm-Method', 'RankM')

# n-d
nk = [10] * dim
maxRank = 5
algo = ot.TensorApproximationAlgorithm(X, Y, distribution, functionFactory, nk,
                                       maxRank)
algo.run()