def generate_sub_graph(self, graph: Graph, match: SubgraphMatch):
        # IE DetectionOutput layer consumes flattened confidences and locations tensors.
        # That is why we add reshapes before them.
        locs_node = match.single_input_node(0)
        conf_node = match.single_input_node(1)
        prior_boxes_node = match.single_input_node(2)

        locs_out_nodes = locs_node[0].out_nodes()
        assert len(locs_out_nodes) == 1
        locs_out_node = locs_out_nodes[list(locs_out_nodes.keys())[0]]
        assert locs_out_node.op == "Result", locs_out_node.op
        graph.remove_node(locs_out_node.id)

        conf_out_nodes = conf_node[0].out_nodes()
        assert len(conf_out_nodes) == 1
        conf_out_node = conf_out_nodes[list(conf_out_nodes.keys())[0]]
        assert conf_out_node.op == "Result", conf_out_node.op
        graph.remove_node(conf_out_node.id)

        # reshape operation to flatten confidence tensor
        const = Const(graph, {'value': int64_array([0, -1])}).create_node()
        reshape_loc_node = Reshape(graph, {}).create_node(
            [locs_node, const], dict(name='DetectionOutput_Reshape_loc_'))

        # reshape operation to flatten confidence tensor
        reshape_conf_node = Reshape(graph, {}).create_node(
            [conf_node, const], dict(name='DetectionOutput_Reshape_conf_'))

        # remove the Result node after the priors node
        assert prior_boxes_node[0].out_node().op == "Result"
        graph.remove_node(prior_boxes_node[0].out_node().id)

        # reshape operation for prior boxes tensor
        const = Const(graph, {'value': int64_array([1, 2, -1])}).create_node()
        reshape_priors_node = Reshape(graph, {}).create_node(
            [prior_boxes_node, const],
            dict(name='DetectionOutput_Reshape_priors_'))
        # create Detection Output node with three inputs: locations, confidences and prior boxes
        detection_output_op = DetectionOutput(
            graph, match.custom_replacement_desc.custom_attributes)
        detection_output_node = detection_output_op.create_node(
            [reshape_loc_node, reshape_conf_node, reshape_priors_node],
            dict(name=detection_output_op.attrs['type'] + '_'))
        PermuteAttrs.set_permutation(reshape_priors_node,
                                     detection_output_node, None)

        # create Output node to mark DetectionOutput as a graph output operation
        output_op = Result(graph)
        output_op.create_node([detection_output_node], dict(name='sink_'))
        return {}
Esempio n. 2
0
 def nodes_to_remove(self, graph: Graph, match: SubgraphMatch):
     new_nodes_to_remove = match.matched_nodes_names()
     new_nodes_to_remove.remove(match.single_input_node(0)[0].id)
     new_nodes_to_remove.remove(match.single_input_node(1)[0].id)
     new_nodes_to_remove.remove(match.single_input_node(2)[0].id)
     return new_nodes_to_remove
Esempio n. 3
0
    def generate_sub_graph(self, graph: Graph, match: SubgraphMatch):
        reshape_classes_node = create_op_node_with_second_input(graph, Reshape, int64_array([0, -1]),
                                                                dict(name='do_reshape_classes'),
                                                                match.single_input_node(1)[0])

        initial_priors_node = match.single_input_node(2)[0]
        priors_name = initial_priors_node.soft_get('name', initial_priors_node.id)
        # model calculates identical prior boxes for each batch, so we take first slice of them
        begin = Const(graph, {'value': mo_array([0, 0, 0], dtype=np.int32)}).create_node()
        end = Const(graph, {'value': mo_array([1, 0, 0], dtype=np.int32)}).create_node()
        stride = Const(graph, {'value': mo_array([1, 1, 1], dtype=np.int32)}).create_node()

        priors_node = StridedSlice(graph, {'name': priors_name + '/0_batch_slice',
                                           'begin_mask': int64_array([1, 1, 1]),
                                           'end_mask': int64_array([1, 0, 0]),
                                           'new_axis_mask': int64_array([0]),
                                           'shrink_axis_mask': int64_array([0]),
                                           'ellipsis_mask': int64_array([0])}).create_node()

        initial_priors_node.out_port(0).connect(priors_node.in_port(0))
        begin.out_port(0).connect(priors_node.in_port(1))
        end.out_port(0).connect(priors_node.in_port(2))
        stride.out_port(0).connect(priors_node.in_port(3))

        placeholders = graph.get_op_nodes(type='Parameter')
        assert len(placeholders) == 1, "{} replacer requires model to have one Placeholder, but current model has " \
                                       "{} placeholders".format(self.replacement_id, len(placeholders))
        placeholder = placeholders[0]

        # scale prior boxes to the [0, 1] interval
        node_with_scales_for_prior_boxes = self.placeholder_scales(placeholder)
        priors_scale_node = Mul(graph, {'name': 'scale_priors'}).create_node()

        broadcast = Broadcast(graph, {'name': 'scales_broadcast'}).create_node()
        shape_of_priors = Shape(graph, {'name': 'priors_shape'}).create_node()
        priors_node.out_port(0).connect(shape_of_priors.in_port(0))
        broadcast.in_port(1).connect(shape_of_priors.out_port(0))
        broadcast.in_port(0).connect(node_with_scales_for_prior_boxes.out_port(0))

        priors_scale_node.in_port(0).connect(priors_node.out_port(0))
        priors_scale_node.in_port(1).connect(broadcast.out_port(0))

        try:
            variance = match.custom_replacement_desc.custom_attributes['variance']
        except:
            raise Error('There is no variance attribute in {} replacement config file `custom_attributes`'
                        ''.format(self.replacement_id))

        priors = self.append_variances(priors_scale_node, variance)

        # calculate prior boxes widths and heights
        split_node = create_op_with_const_inputs(
            graph, VariadicSplit, {1: int64_array(2), 2: int64_array([1, 1, 1, 1])}, {'out_ports_count': 4},
            priors_scale_node)

        priors_width_node = Sub(graph, dict(name=split_node.name + '/sub_2-0_')
                                ).create_node([(split_node, 2), (split_node, 0)])
        priors_height_node = Sub(graph, dict(name=split_node.name + '/sub_3-1_')
                                 ).create_node([(split_node, 3), (split_node, 1)])

        # concat weights and heights into a single tensor and multiple with the box coordinates regression values
        # WA with 3 Concats instead of 1 for keeping model reshapable
        # concat_width_height_node = Concat(graph, {'name': 'concat_priors_width_height', 'axis': -1,
        #                                           'in_ports_count': 4}).create_node(
        # [priors_width_node, priors_height_node, priors_width_node, priors_height_node])

        concat_1 = Concat(graph, {'name': 'concat_width_height',
                                  'axis': -1, 'in_ports_count': 2}).create_node([priors_width_node, priors_height_node])
        concat_2 = Concat(graph, {'name': 'concat_width_height_width',
                                  'axis': -1, 'in_ports_count': 2}).create_node([concat_1, priors_width_node])
        concat_width_height_node = Concat(graph, {'name': 'concat_priors_width_height', 'axis': -1, 'in_ports_count': 2}
                                          ).create_node([concat_2, priors_height_node])

        applied_width_height_regressions_node = Mul(graph, {'name': 'final_regressions'}).create_node(
            [concat_width_height_node, match.single_input_node(0)[0]])

        # reshape to 2D tensor as Inference Engine Detection Output layer expects
        reshape_regression_node = create_op_node_with_second_input(graph, Reshape, int64_array([0, -1]),
                                                                   dict(name='reshape_regression'),
                                                                   applied_width_height_regressions_node)

        detection_output_op = DetectionOutput(graph, match.custom_replacement_desc.custom_attributes)
        # get nms from the original network
        iou_threshold = None
        nms_nodes = graph.get_op_nodes(op='NonMaxSuppression')
        if len(nms_nodes) > 0:
            # it is highly unlikely that for different classes NMS has different
            # moreover DetectionOutput accepts only scalar values for iou_threshold (nms_threshold)
            iou_threshold = nms_nodes[0].in_node(3).value
        if iou_threshold is None:
            raise Error('During {} `iou_threshold` was not retrieved from RetinaNet graph'.format(self.replacement_id))

        detection_output_node = detection_output_op.create_node(
            [reshape_regression_node, reshape_classes_node, priors],
            dict(name=detection_output_op.attrs['type'], nms_threshold=iou_threshold, clip_after_nms=1, normalized=1,
                 variance_encoded_in_target=0, background_label_id=1000))

        # As outputs are replaced with a postprocessing node, outgoing tensor names are no longer
        # correspond to original tensors and should be removed from output->Result edges
        out_nodes = []
        for out in range(match.outputs_count()):
            out_nodes.append(match.output_node(out)[0])
        clear_tensor_names_info(out_nodes)

        return {'detection_output_node': detection_output_node}