#Contact: Xiao Wang ([email protected], [email protected]) #Some codes adopted from https://github.com/facebookresearch/moco from ops.argparser import argparser from ops.Config_Envrionment import Config_Environment import torch.multiprocessing as mp from training.main_worker import main_worker def main(args): #config environment ngpus_per_node=Config_Environment(args) # call training main control function if args.multiprocessing_distributed==1: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.world_size # Use torch.multiprocessing.spawn to launch distributed processes: the # main_worker process function mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) else: # Simply call main_worker function main_worker(args.gpu, ngpus_per_node, args) if __name__ == '__main__': #use_cuda = torch.cuda.is_available() #print("starting check cuda status",use_cuda) #if use_cuda: args,params=argparser() main(args)
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License V3 for more details. # # You should have received a copy of the GNU v3.0 General Public License # along with this program. If not, see https://www.gnu.org/licenses/gpl-3.0.en.html. import os from ops.argparser import argparser from ops.os_operation import mkdir import shutil if __name__ == "__main__": params = argparser() if params['mode'] == 0: input_map = params['F'] input_map = os.path.abspath(input_map) type = params['type'] choose = params['gpu'] os.environ["CUDA_VISIBLE_DEVICES"] = choose if type == 0: indicate = 'SIMU6' elif type == 1: indicate = 'SIMU10' elif type == 2: indicate = 'SIMU_MIX' elif type == 3: indicate = 'REAL' else:
def main(args): if args.choose is not None: os.environ['CUDA_VISIBLE_DEVICES'] = args.choose print("Current we choose gpu:%s" % args.choose) #config environment ngpus_per_node = Config_Environment(args) # call training main control function if args.multiprocessing_distributed == 1: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.world_size # Use torch.multiprocessing.spawn to launch distributed processes: the # main_worker process function mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) else: # Simply call main_worker function main_worker(args.gpu, ngpus_per_node, args) if __name__ == '__main__': #use_cuda = torch.cuda.is_available() #print("starting check cuda status",use_cuda) #if use_cuda: parser = argparser() args = parser.parse_args() main(args)