Esempio n. 1
0
 def __init__(self, config, weight_init):
     super().__init__()
     with tf.device('{}:*'.format(config.device)):
         with tf.name_scope('discriminator_f'):
             self.weight_init = weight_init
             self.ch = config.gen_disc_ch
             if config.conditional:
                 self.emb = tf.keras.layers.Embedding(
                     config.num_classes, self.ch * 4)
             self.res_down0 = ops.resblock_down(
                 channels=self.ch,
                 config=config,
                 weight_init=self.weight_init,
                 use_bias=False)
             self.bn0 = BatchNormalization()
             self.att0 = ops.Attention(ch=self.ch, config=config)
             self.res_down1 = ops.resblock_down(
                 channels=self.ch * 2,
                 config=config,
                 weight_init=self.weight_init,
                 use_bias=False)
             self.res_down2 = ops.resblock_down(
                 channels=self.ch * 4,
                 config=config,
                 weight_init=self.weight_init,
                 use_bias=False)
             self.res0 = ops.resblock(channels=self.ch * 4,
                                      config=config,
                                      weight_init=self.weight_init,
                                      use_bias=False)
             self.dense0 = Dense(units=1,
                                 use_bias=True,
                                 kernel_initializer=self.weight_init)
Esempio n. 2
0
def encoder(inputs,
            scope="encoder",
            is_training=True,
            reuse=False,
            shared_scope="shared_encoder",
            shared_reuse=False):
    """
        Define Encoder Network
            inputs: input images
            scope: name of encoder scope
            is_training: is training process
            reuse: reuse variable of scope
            shared_scope: name of shared encoder scope
            shared_reuse: reuse variable of shared_scope
    """

    with tf.variable_scope(scope, reuse=reuse):
        channel = params.encoder.channel
        net = inputs
        net = ops.conv(net,
                       scope="conv1",
                       dim=channel,
                       kernel_size=[7, 7],
                       stride=1,
                       activation_fn=ops.leaky_relu,
                       is_training=is_training,
                       weights_initializer=params.encoder.weights_initializer)
        for i in range(1, params.encoder.n_enconder):
            channel *= 2
            net = ops.conv(
                net,
                scope="conv_{}".format(i + 1),
                dim=channel,
                kernel_size=[3, 3],
                stride=2,
                activation_fn=ops.leaky_relu,
                is_training=is_training,
                weights_initializer=params.encoder.weights_initializer)
        for i in range(params.encoder.n_resblock - 1):
            net = ops.resblock(
                net,
                scope="resblock_{}".format(i + 1),
                dim=channel,
                kernel_size=[3, 3],
                stride=1,
                norm_fn=params.encoder.norm_fn,
                is_training=is_training,
                weights_initializer=params.encoder.weights_initializer,
                dropout_ratio=params.encoder.dropout_ratio)

    with tf.variable_scope(shared_scope, reuse=shared_reuse):
        chanel = params.decoder.channel
        net = ops.resblock(
            net,
            scope="resblock_{}".format(params.encoder.n_resblock),
            dim=channel,
            kernel_size=[3, 3],
            stride=1,
            norm_fn=params.encoder.norm_fn,
            is_training=is_training,
            weights_initializer=params.encoder.weights_initializer,
            dropout_ratio=params.encoder.dropout_ratio)

    with tf.variable_scope(scope, reuse=reuse):
        net = ops.gaussian_noise_layer(net)
        return net
Esempio n. 3
0
def attention(inputs,
              scope="attention",
              is_training=True,
              reuse=False,
              shared_scope="shared_attention",
              shared_reuse=False):
    """
        Define Attention Network
            inputs: input images
            scope: name of attetion scope
            is_training: is training process
            reuse: reuse variable of scope
            shared_scope: name of shared attetion scope
            shared_reuse: reuse variable of shared_scope
    """

    with tf.variable_scope(scope, reuse=reuse):
        net = inputs
        channel = params.encoder.channel
        net = ops.conv(net,
                       scope="conv1",
                       dim=channel,
                       kernel_size=[7, 7],
                       stride=1,
                       activation_fn=ops.leaky_relu,
                       is_training=is_training,
                       weights_initializer=params.encoder.weights_initializer)
        for i in range(1, params.encoder.n_enconder):
            channel *= 2
            net = ops.conv(
                net,
                scope="conv_{}".format(i + 1),
                dim=channel,
                kernel_size=[3, 3],
                stride=2,
                activation_fn=ops.leaky_relu,
                is_training=is_training,
                weights_initializer=params.encoder.weights_initializer)

        for i in range(params.encoder.n_resblock):
            net = ops.resblock(
                net,
                scope="resblock_{}".format(i + 1),
                dim=channel,
                kernel_size=[3, 3],
                stride=1,
                norm_fn=params.encoder.norm_fn,
                is_training=is_training,
                weights_initializer=params.encoder.weights_initializer,
                dropout_ratio=params.encoder.dropout_ratio)

        channel = params.decoder.channel
        for i in range(params.decoder.n_resblock):
            net = ops.resblock(
                net,
                scope="deresblock_{}".format(params.decoder.n_resblock - i),
                dim=channel,
                kernel_size=[3, 3],
                stride=1,
                norm_fn=params.encoder.norm_fn,
                is_training=is_training,
                weights_initializer=params.encoder.weights_initializer,
                dropout_ratio=params.encoder.dropout_ratio)

        for i in range(1, params.decoder.n_decoder):
            channel = channel / 2
            net = ops.deconv(
                net,
                scope="deconv_{}".format(params.decoder.n_decoder - i + 1),
                dim=channel,
                kernel_size=[3, 3],
                stride=2,
                activation_fn=ops.leaky_relu,
                is_training=is_training,
                weights_initializer=params.decoder.weights_initializer)
        net = ops.deconv(
            net,
            scope="deconv_1",
            dim=1,
            kernel_size=[1, 1],
            stride=1,
            activation_fn=ops.sigmoid,
            is_training=is_training,
            weights_initializer=params.decoder.weights_initializer)
        return net