def main(): global args, config, best_prec1 args = parser.parse_args() with open(args.config) as f: config = yaml.load(f) config = EasyDict(config['common']) config.save_path = os.path.dirname(args.config) rank, world_size = dist_init() # create model bn_group_size = config.model.kwargs.bn_group_size bn_var_mode = config.model.kwargs.get('bn_var_mode', 'L2') if bn_group_size == 1: bn_group = None else: assert world_size % bn_group_size == 0 bn_group = simple_group_split(world_size, rank, world_size // bn_group_size) config.model.kwargs.bn_group = bn_group config.model.kwargs.bn_var_mode = (link.syncbnVarMode_t.L1 if bn_var_mode == 'L1' else link.syncbnVarMode_t.L2) model = model_entry(config.model) if rank == 0: print(model) model.cuda() if config.optimizer.type == 'FP16SGD' or config.optimizer.type == 'FusedFP16SGD': args.fp16 = True else: args.fp16 = False if args.fp16: # if you have modules that must use fp32 parameters, and need fp32 input # try use link.fp16.register_float_module(your_module) # if you only need fp32 parameters set cast_args=False when call this # function, then call link.fp16.init() before call model.half() if config.optimizer.get('fp16_normal_bn', False): print('using normal bn for fp16') link.fp16.register_float_module(link.nn.SyncBatchNorm2d, cast_args=False) link.fp16.register_float_module(torch.nn.BatchNorm2d, cast_args=False) link.fp16.init() model.half() model = DistModule(model, args.sync) # create optimizer opt_config = config.optimizer opt_config.kwargs.lr = config.lr_scheduler.base_lr if config.get('no_wd', False): param_group, type2num = param_group_no_wd(model) opt_config.kwargs.params = param_group else: opt_config.kwargs.params = model.parameters() optimizer = optim_entry(opt_config) # optionally resume from a checkpoint last_iter = -1 best_prec1 = 0 if args.load_path: if args.recover: best_prec1, last_iter = load_state(args.load_path, model, optimizer=optimizer) else: load_state(args.load_path, model) cudnn.benchmark = True # Data loading code normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # augmentation aug = [ transforms.RandomResizedCrop(config.augmentation.input_size), transforms.RandomHorizontalFlip() ] for k in config.augmentation.keys(): assert k in [ 'input_size', 'test_resize', 'rotation', 'colorjitter', 'colorold' ] rotation = config.augmentation.get('rotation', 0) colorjitter = config.augmentation.get('colorjitter', None) colorold = config.augmentation.get('colorold', False) if rotation > 0: aug.append(transforms.RandomRotation(rotation)) if colorjitter is not None: aug.append(transforms.ColorJitter(*colorjitter)) aug.append(transforms.ToTensor()) if colorold: aug.append(ColorAugmentation()) aug.append(normalize) # train train_dataset = McDataset(config.train_root, config.train_source, transforms.Compose(aug), fake=args.fake) # val val_dataset = McDataset( config.val_root, config.val_source, transforms.Compose([ transforms.Resize(config.augmentation.test_resize), transforms.CenterCrop(config.augmentation.input_size), transforms.ToTensor(), normalize, ]), args.fake) train_sampler = DistributedGivenIterationSampler( train_dataset, config.lr_scheduler.max_iter, config.batch_size, last_iter=last_iter) val_sampler = DistributedSampler(val_dataset, round_up=False) train_loader = DataLoader(train_dataset, batch_size=config.batch_size, shuffle=False, num_workers=config.workers, pin_memory=True, sampler=train_sampler) val_loader = DataLoader(val_dataset, batch_size=config.batch_size, shuffle=False, num_workers=config.workers, pin_memory=True, sampler=val_sampler) config.lr_scheduler['optimizer'] = optimizer.optimizer if isinstance( optimizer, FP16SGD) else optimizer config.lr_scheduler['last_iter'] = last_iter lr_scheduler = get_scheduler(config.lr_scheduler) if rank == 0: tb_logger = SummaryWriter(config.save_path + '/events') logger = create_logger('global_logger', config.save_path + '/log.txt') logger.info('args: {}'.format(pprint.pformat(args))) logger.info('config: {}'.format(pprint.pformat(config))) else: tb_logger = None if args.evaluate: if args.fusion_list is not None: validate(val_loader, model, fusion_list=args.fusion_list, fuse_prob=args.fuse_prob) else: validate(val_loader, model) link.finalize() return train(train_loader, val_loader, model, optimizer, lr_scheduler, last_iter + 1, tb_logger) link.finalize()
def main(): global args, config, best_loss args = parser.parse_args() with open(args.config) as f: config = yaml.load(f) for k, v in config['common'].items(): setattr(args, k, v) config = EasyDict(config['common']) rank, world_size, device_id = dist_init( os.path.join(args.distributed_path, config.distributed_file)) args.save_path_dated = args.save_path + '/' + args.datetime if args.run_tag != '': args.save_path_dated += '-' + args.run_tag # create model model = model_entry(config.model) model.cuda() model = nn.parallel.DistributedDataParallel(model, device_ids=[device_id]) # create optimizer opt_config = config.optimizer opt_config.kwargs.lr = config.lr_scheduler.base_lr opt_config.kwargs.params = model.parameters() optimizer = optim_entry(opt_config) # optionally resume from a checkpoint last_iter = -1 best_loss = 1e9 if args.load_path: if args.recover: best_loss, last_iter = load_state(args.load_path, model, optimizer=optimizer) else: load_state(args.load_path, model) cudnn.benchmark = True # train augmentation if config.augmentation.get('imgnet_mean', False): model_mean = (0.485, 0.456, 0.406) model_std = (0.229, 0.224, 0.225) else: model_mean = (0.5, 0.5, 0.5) model_std = (0.5, 0.5, 0.5) trans = albumentations.Compose([ RandomResizedCrop(config.augmentation.input_size, config.augmentation.input_size, scale=(config.augmentation.min_scale**2., 1.), ratio=(1., 1.)), HorizontalFlip(p=0.5), RandomBrightnessContrast(brightness_limit=0.25, contrast_limit=0.1, p=0.5), JpegCompression(p=.2, quality_lower=50), MotionBlur(p=0.5), Normalize(mean=model_mean, std=model_std), ToTensorV2() ]) train_dataset = FaceDataset(config.train_root, config.train_source, transform=trans, resize=config.augmentation.input_size, image_format=config.get('image_format', None), random_frame=config.get( 'train_random_frame', False), bgr=config.augmentation.get('bgr', False)) train_sampler = DistributedGivenIterationSampler( train_dataset, config.lr_scheduler.max_iter, config.batch_size, last_iter=last_iter) train_loader = DataLoader(train_dataset, batch_size=config.batch_size, shuffle=False, num_workers=config.workers, pin_memory=True, sampler=train_sampler) # validation augmentation trans = albumentations.Compose([ Resize(config.augmentation.input_size, config.augmentation.input_size), Normalize(mean=model_mean, std=model_std), ToTensorV2() ]) val_multi_loader = [] if args.val_source != '': for dataset_idx in range(len(args.val_source)): val_dataset = FaceDataset( args.val_root[dataset_idx], args.val_source[dataset_idx], transform=trans, output_index=True, resize=config.augmentation.input_size, image_format=config.get('image_format', None), bgr=config.augmentation.get('bgr', False)) val_sampler = DistributedSampler(val_dataset, round_up=False) val_loader = DataLoader(val_dataset, batch_size=config.batch_size, shuffle=False, num_workers=config.workers, pin_memory=True, sampler=val_sampler) val_multi_loader.append(val_loader) config.lr_scheduler['optimizer'] = optimizer config.lr_scheduler['last_iter'] = last_iter lr_scheduler = get_scheduler(config.lr_scheduler) if rank == 0: mkdir(args.save_path) mkdir(args.save_path_dated) tb_logger = SummaryWriter(args.save_path_dated) logger = create_logger('global_logger', args.save_path_dated + '-log.txt') logger.info('{}'.format(args)) logger.info(model) logger.info(parameters_string(model)) logger.info('len(train dataset) = %d' % len(train_loader.dataset)) for dataset_idx in range(len(val_multi_loader)): logger.info( 'len(val%d dataset) = %d' % (dataset_idx, len(val_multi_loader[dataset_idx].dataset))) mkdir(args.save_path_dated + '/saves') else: tb_logger = None positive_weight = config.get('positive_weight', 0.5) weight = torch.tensor([1. - positive_weight, positive_weight]) * 2. if rank == 0: logger.info('using class weights: {}'.format(weight.tolist())) criterion = nn.CrossEntropyLoss(weight=weight).cuda() if args.evaluate: if args.evaluate_path: all_ckpt = get_all_checkpoint(args.evaluate_path, args.range_list, rank) for ckpt in all_ckpt: if rank == 0: logger.info('Testing ckpt: ' + ckpt) last_iter = -1 _, last_iter = load_state(ckpt, model, optimizer=optimizer) for dataset_idx in range(len(val_multi_loader)): validate(dataset_idx, val_multi_loader[dataset_idx], model, criterion, tb_logger, curr_step=last_iter, save_softmax=True) else: for dataset_idx in range(len(val_multi_loader)): validate(dataset_idx, val_multi_loader[dataset_idx], model, criterion, tb_logger, curr_step=last_iter, save_softmax=True) return train(train_loader, val_multi_loader, model, criterion, optimizer, lr_scheduler, last_iter + 1, tb_logger) return