def create_random_individual(self): cities = [] cities += self.required_cities random.shuffle(self.not_required_possible_cities) for random_city in self.not_required_possible_cities: if random_city not in cities: backup = list(cities) cities.append(random_city) solution = Solution(self.origin_city, cities, self.required_cities, self.max_trip_time) if not solution.is_valid_knapsack_time(): cities = backup continue optimizer = TSPOptimizerClosestCityStrategy(self.origin_city, cities) cities = optimizer.optimize() solution.cities = cities if not solution.is_valid_total_trip_time(): cities = backup continue solution = Solution(self.origin_city, cities, self.required_cities, self.max_trip_time) optimizer = TSPOptimizerClosestCityStrategy(self.origin_city, cities) solution.cities = optimizer.optimize() return solution
def solve(self): # Add all required cities solution = Solution(self.origin_city, list(self.required_cities), self.required_cities, self.max_trip_time) solution.update_fitness() if not solution.is_valid(): raise Exception() # Compute ratios ratios = [] for city in self.possible_trip_cities: if city in self.required_cities: continue ratios.append([city, city.value / city.stay_time]) ratios.sort(reverse=True, key=lambda x: x[1]) # Add city until knapsack is full for r in ratios: city = r[0] backup = list(solution.cities) solution.cities.append(city) solution.update_fitness() tsp_optimizer = TSPOptimizerClosestCityStrategy( self.origin_city, solution.cities) solution.cities = tsp_optimizer.optimize() if not solution.is_valid_total_trip_time(): solution.cities = backup solution.update_fitness() break self.improve_solution(solution) return solution
def __get_child(self, other): child_solution_cities = [] # Add required cities child_solution_cities += self.required_cities # Add cities present in both parents for city_parent_1 in self.solution.cities: if city_parent_1 in other.solution.cities: if city_parent_1 not in child_solution_cities: child_solution_cities.append(city_parent_1) # Get random sample of cities from parent 1 and add them to child if not already present parent_solution_cities = [] if len(self.solution.cities) > 0: parent_solution_cities = random.sample( self.solution.cities, random.randint(1, len(self.solution.cities))) random.shuffle(parent_solution_cities) for parent_solution_city in parent_solution_cities: if parent_solution_city in child_solution_cities: continue child_solution_cities.append(parent_solution_city) # Get random sample of cities from parent 2 and add them to child if not already present parent_solution_cities = [] if len(other.solution.cities) > 0: parent_solution_cities = random.sample( other.solution.cities, random.randint(1, len(other.solution.cities))) random.shuffle(parent_solution_cities) for parent_solution_city in parent_solution_cities: if parent_solution_city in child_solution_cities: continue child_solution_cities.append(parent_solution_city) # Get child solution child_solution = Solution(self.origin_city, child_solution_cities, self.required_cities, self.max_trip_time) # Optimize tsp optimizer = TSPOptimizerClosestCityStrategy(self.origin_city, child_solution.cities) child_solution.cities = optimizer.optimize() # Delete random cities until solution is valid while not child_solution.is_valid_total_trip_time(): self.solution_delete_city(child_solution) # Optimize the tsp part of the solution optimizer = TSPOptimizerClosestCityStrategy( self.origin_city, child_solution.cities) child_solution.cities = optimizer.optimize() child_solution.update_fitness() child_individual = Individual(self.origin_city, self.possible_cities, self.required_cities, self.max_trip_time, child_solution) return child_individual
def is_valid(self, origin_city, required_cities, max_trip_time): if len(required_cities) == 0: return True solution = Solution(origin_city, required_cities, required_cities, max_trip_time) optimizer = TSPOptimizerClosestCityStrategy(origin_city, solution.cities) solution.cities = optimizer.optimize() if not solution.is_valid(): solution.print() print() print("NOT VALID SOLUTION WITH ONLY REQUIRED CITIES") return False return True
def get_valid_solution(self): while True: cities = random.sample( self.possible_trip_cities, random.randint(1, len(self.possible_trip_cities))) random.shuffle(cities) solution = Solution(self.origin_city, cities, self.required_cities, self.max_trip_time) if not solution.is_valid_knapsack_time( ) or not solution.is_valid_required_city(): continue optimizer = TSPOptimizerClosestCityStrategy( self.origin_city, solution.cities) solution.cities = optimizer.optimize() if solution.is_valid_total_trip_time(): return solution
def solve(self): best_solution_fitness = 0 best_solution_trip_time = 0 if self.should_print_stats(): self.print_stats() for x in range(1, len(self.possible_trip_cities) + 1): for cities in combinations(self.possible_trip_cities, x): self.current_iteration += 1 if self.should_print_stats(): self.print_stats() solution = Solution(self.origin_city, cities, self.required_cities, self.max_trip_time) if not solution.is_valid_knapsack_time() or not solution.is_valid_required_city(): continue # Apply construction heuristic optimizer = TSPOptimizerClosestCityStrategy(self.origin_city, solution.cities) solution.cities = optimizer.optimize() if not solution.is_valid_total_trip_time(): continue if solution.fitness > best_solution_fitness: # Update best_solution as first objective fitness is better best_solution = solution self.set_best_solution(best_solution) best_solution_fitness = solution.fitness best_solution_trip_time = solution.get_total_travel_time() elif solution.fitness == best_solution_fitness: if solution.get_total_travel_time() < best_solution_trip_time: # Update best_solution as first objective fitness is same but # second objective travel time is better best_solution = solution self.set_best_solution(best_solution) best_solution_fitness = solution.fitness best_solution_trip_time = solution.get_total_travel_time() # self.add_good_solution(solution) self.improve_solutions() # return self.best_solution, self.good_solutions return self.best_solution
def create_random_solution(self): while True: cities = [] cities += self.required_cities sample_size = random.randint(1, len(self.possible_cities)) random_sample_cities = random.sample(self.possible_cities, sample_size) for random_city in random_sample_cities: if random_city not in cities: cities.append(random_city) random.shuffle(cities) solution = Solution(self.origin_city, cities, self.required_cities, self.max_trip_time) if not solution.is_valid_knapsack_time( ) or not solution.is_valid_required_city(): continue optimizer = TSPOptimizerClosestCityStrategy( self.origin_city, solution.cities) solution.cities = optimizer.optimize() if solution.is_valid_total_trip_time(): return solution