def __init__(self, name, x, y, lr, init_emb, vocab_size, emb_dim, hidden_dim, output_dim, window, opt): assert window % 2 == 1, 'Window size must be odd' """ input """ self.name = name self.x = x self.y = y self.lr = lr self.input = [self.x, self.y, self.lr] n_words = x.shape[0] """ params """ if init_emb is not None: self.emb = theano.shared(init_emb) else: self.emb = theano.shared(sample_weights(vocab_size, emb_dim)) self.W_in = theano.shared( sample_weights(hidden_dim, 1, window, emb_dim)) self.W_out = theano.shared(sample_weights(hidden_dim, output_dim)) self.b_in = theano.shared(sample_weights(hidden_dim, 1)) self.b_y = theano.shared(sample_weights(output_dim)) self.params = [self.W_in, self.W_out, self.b_in, self.b_y] """ pad """ self.zero = theano.shared( np.zeros(shape=(1, 1, window / 2, emb_dim), dtype=theano.config.floatX)) """ look up embedding """ self.x_emb = self.emb[self.x] # x_emb: 1D: n_words, 2D: n_emb """ convolution """ self.x_in = self.conv(self.x_emb) """ feed-forward computation """ self.h = relu( self.x_in.reshape((self.x_in.shape[1], self.x_in.shape[2])) + T.repeat(self.b_in, T.cast(self.x_in.shape[2], 'int32'), 1)).T self.o = T.dot(self.h, self.W_out) + self.b_y self.p_y_given_x = T.nnet.softmax(self.o) """ prediction """ self.y_pred = T.argmax(self.o, axis=1) self.result = T.eq(self.y_pred, self.y) """ cost function """ self.nll = -T.sum(T.log(self.p_y_given_x)[T.arange(n_words), self.y]) self.cost = self.nll if opt == 'sgd': self.updates = sgd(self.cost, self.params, self.emb, self.x_emb, self.lr) else: self.updates = ada_grad(self.cost, self.params, self.emb, self.x_emb, self.x, self.lr)
def __init__(self, name, x, y, lr, init_emb, vocab_size, emb_dim, hidden_dim, output_dim, window, opt): assert window % 2 == 1, 'Window size must be odd' """ input """ self.name = name self.x = x self.y = y self.lr = lr self.input = [self.x, self.y, self.lr] n_words = x.shape[0] """ params """ if init_emb is not None: self.emb = theano.shared(init_emb) else: self.emb = theano.shared(sample_weights(vocab_size, emb_dim)) self.W_in = theano.shared(sample_weights(hidden_dim, 1, window, emb_dim)) self.W_out = theano.shared(sample_weights(hidden_dim, output_dim)) self.b_in = theano.shared(sample_weights(hidden_dim, 1)) self.b_y = theano.shared(sample_weights(output_dim)) self.params = [self.W_in, self.W_out, self.b_in, self.b_y] """ pad """ self.zero = theano.shared(np.zeros(shape=(1, 1, window / 2, emb_dim), dtype=theano.config.floatX)) """ look up embedding """ self.x_emb = self.emb[self.x] # x_emb: 1D: n_words, 2D: n_emb """ convolution """ self.x_in = self.conv(self.x_emb) """ feed-forward computation """ self.h = relu(self.x_in.reshape((self.x_in.shape[1], self.x_in.shape[2])) + T.repeat(self.b_in, T.cast(self.x_in.shape[2], 'int32'), 1)).T self.o = T.dot(self.h, self.W_out) + self.b_y self.p_y_given_x = T.nnet.softmax(self.o) """ prediction """ self.y_pred = T.argmax(self.o, axis=1) self.result = T.eq(self.y_pred, self.y) """ cost function """ self.nll = -T.sum(T.log(self.p_y_given_x)[T.arange(n_words), self.y]) self.cost = self.nll if opt == 'sgd': self.updates = sgd(self.cost, self.params, self.emb, self.x_emb, self.lr) else: self.updates = ada_grad(self.cost, self.params, self.emb, self.x_emb, self.x, self.lr)
def __init__(self, x, y, n_words, batch_size, lr, init_emb, vocab_size, emb_dim, hidden_dim, output_dim, window, opt): assert window % 2 == 1, 'Window size must be odd' """ input """ self.x = x # 1D: n_words * batch_size, 2D: window; elem=word id self.x_v = x.flatten( ) # 1D: n_words * batch_size * window; elem=word id self.y = y self.batch_size = batch_size self.n_words = n_words self.lr = lr """ params """ if init_emb is not None: self.emb = theano.shared(init_emb) else: self.emb = theano.shared(sample_weights(vocab_size, emb_dim)) self.W_in = theano.shared(sample_weights(emb_dim * window, hidden_dim)) self.W_out = theano.shared(sample_weights(hidden_dim, output_dim)) self.b_in = theano.shared(sample_weights(hidden_dim)) self.b_y = theano.shared(sample_weights(output_dim)) self.params = [self.W_in, self.W_out, self.b_in, self.b_y] """ look up embedding """ self.x_emb = self.emb[ self.x_v] # x_emb: 1D: batch_size * n_words * window, 2D: emb_dim """ forward """ self.h = relu( T.dot(self.x_emb.reshape((batch_size * n_words, emb_dim * window)), self.W_in) + self.b_in) self.o = T.dot(self.h, self.W_out) + self.b_y self.p_y_given_x = T.nnet.softmax(self.o) """ predict """ self.y_pred = T.argmax(self.o, axis=1) self.result = T.eq(self.y_pred, self.y) """ loss """ self.log_p = T.log(self.p_y_given_x)[T.arange(batch_size * n_words), self.y] self.nll = -T.sum(self.log_p) self.cost = self.nll if opt == 'sgd': self.updates = sgd(self.cost, self.params, self.emb, self.x_emb, self.lr) else: self.updates = ada_grad(self.cost, self.params, self.emb, self.x_emb, self.x, self.lr)
def __init__(self, x, y, n_words, batch_size, lr, init_emb, vocab_size, emb_dim, hidden_dim, output_dim, window, opt): assert window % 2 == 1, 'Window size must be odd' """ input """ self.x = x # 1D: n_words * batch_size, 2D: window; elem=word id self.x_v = x.flatten() # 1D: n_words * batch_size * window; elem=word id self.y = y self.batch_size = batch_size self.n_words = n_words self.lr = lr """ params """ if init_emb is not None: self.emb = theano.shared(init_emb) else: self.emb = theano.shared(sample_weights(vocab_size, emb_dim)) self.W_in = theano.shared(sample_weights(emb_dim * window, hidden_dim)) self.W_out = theano.shared(sample_weights(hidden_dim, output_dim)) self.b_in = theano.shared(sample_weights(hidden_dim)) self.b_y = theano.shared(sample_weights(output_dim)) self.params = [self.W_in, self.W_out, self.b_in, self.b_y] """ look up embedding """ self.x_emb = self.emb[self.x_v] # x_emb: 1D: batch_size * n_words * window, 2D: emb_dim """ forward """ self.h = relu(T.dot(self.x_emb.reshape((batch_size * n_words, emb_dim * window)), self.W_in) + self.b_in) self.o = T.dot(self.h, self.W_out) + self.b_y self.p_y_given_x = T.nnet.softmax(self.o) """ predict """ self.y_pred = T.argmax(self.o, axis=1) self.result = T.eq(self.y_pred, self.y) """ loss """ self.log_p = T.log(self.p_y_given_x)[T.arange(batch_size * n_words), self.y] self.nll = -T.sum(self.log_p) self.cost = self.nll if opt == 'sgd': self.updates = sgd(self.cost, self.params, self.emb, self.x_emb, self.lr) else: self.updates = ada_grad(self.cost, self.params, self.emb, self.x_emb, self.x, self.lr)
def __init__(self, name, w, c, b, y, lr, init_w_emb, vocab_w_size, vocab_c_size, w_emb_dim, c_emb_dim, w_hidden_dim, c_hidden_dim, output_dim, window, opt): assert window % 2 == 1, 'Window size must be odd' """ input """ self.name = name self.w = w self.c = c self.b = b self.y = y self.lr = lr self.input = [self.w, self.c, self.b, self.y, self.lr] n_phi = w_emb_dim + c_emb_dim * window n_words = w.shape[0] """ params """ if init_w_emb is not None: self.emb = theano.shared(init_w_emb) else: self.emb = theano.shared(sample_weights(vocab_w_size, w_emb_dim)) self.emb_c = theano.shared(sample_norm_dist(vocab_c_size, c_emb_dim)) self.W_in = theano.shared(sample_weights(w_hidden_dim, 1, window, n_phi)) self.W_c = theano.shared(sample_weights(c_hidden_dim, 1, window, c_emb_dim)) self.W_out = theano.shared(sample_weights(w_hidden_dim, output_dim)) self.b_in = theano.shared(sample_weights(w_hidden_dim, 1)) self.b_c = theano.shared(sample_weights(c_hidden_dim)) self.b_y = theano.shared(sample_weights(output_dim)) """ pad """ self.zero = theano.shared(np.zeros(shape=(1, 1, window / 2, n_phi), dtype=theano.config.floatX)) self.zero_c = theano.shared(np.zeros(shape=(1, 1, window / 2, c_emb_dim), dtype=theano.config.floatX)) self.params = [self.emb_c, self.W_in, self.W_c, self.W_out, self.b_in, self.b_c, self.b_y] """ look up embedding """ x_emb = self.emb[self.w] # x_emb: 1D: n_words, 2D: w_emb_dim c_emb = self.emb_c[self.c] # c_emb: 1D: n_chars, 2D: c_emb_dim """ create feature """ c_phi = self.create_char_feature(self.b, c_emb, self.zero_c) + self.b_c # 1D: n_words, 2D: c_hidden_dim(50) x_phi = T.concatenate([x_emb, c_phi], axis=1) # 1D: n_words, 2D: w_emb_dim(100) + c_hidden_dim(50) """ convolution """ x_padded = T.concatenate([self.zero, x_phi.reshape((1, 1, x_phi.shape[0], x_phi.shape[1])), self.zero], axis=2) # x_padded: 1D: n_words + n_pad, 2D: n_phi x_in = conv2d(input=x_padded, filters=self.W_in) # 1D: 1, 2D: w_hidden_dim(300), 3D: n_words, 4D: 1 """ feed-forward computation """ h = relu(x_in.reshape((x_in.shape[1], x_in.shape[2])) + T.repeat(self.b_in, T.cast(x_in.shape[2], 'int32'), 1)).T self.o = T.dot(h, self.W_out) + self.b_y self.p_y_given_x = T.nnet.softmax(self.o) """ prediction """ self.y_pred = T.argmax(self.o, axis=1) self.result = T.eq(self.y_pred, self.y) """ cost function """ self.nll = -T.sum(T.log(self.p_y_given_x)[T.arange(n_words), self.y]) self.cost = self.nll if opt == 'sgd': self.updates = sgd(self.cost, self.params, self.emb, x_emb, self.lr) else: self.updates = ada_grad(self.cost, self.params, self.emb, x_emb, self.w, self.lr)
def __init__(self, x, c, y, n_words, batch_size, lr, init_emb, vocab_w_size, w_emb_dim, w_hidden_dim, c_emb_dim, c_hidden_dim, output_dim, vocab_c_size, window, opt): assert window % 2 == 1, 'Window size must be odd' """ input """ self.x = x # 1D: n_words * batch_size, 2D: window; elem=word id self.x_v = x.flatten( ) # 1D: n_words * batch_size * window; elem=word id self.c = c # 1D: n_words * batch_size, 2D: window, 3D: max_len_char, 4D: window; elem=char id self.y = y self.batch_size = batch_size self.n_words = n_words self.lr = lr n_phi = (w_emb_dim + c_hidden_dim) * window max_len_char = T.cast(self.c.shape[2], 'int32') """ params """ if init_emb is not None: self.emb = theano.shared(init_emb) else: self.emb = theano.shared(sample_weights(vocab_w_size, w_emb_dim)) self.pad = build_shared_zeros((1, c_emb_dim)) self.e_c = theano.shared(sample_norm_dist(vocab_c_size - 1, c_emb_dim)) self.emb_c = T.concatenate([self.pad, self.e_c], 0) self.W_in = theano.shared(sample_weights(n_phi, w_hidden_dim)) self.W_c = theano.shared( sample_weights(c_emb_dim * window, c_hidden_dim)) self.W_out = theano.shared(sample_weights(w_hidden_dim, output_dim)) self.b_in = theano.shared(sample_weights(w_hidden_dim)) self.b_c = theano.shared(sample_weights(c_hidden_dim)) self.b_y = theano.shared(sample_weights(output_dim)) self.params = [ self.e_c, self.W_in, self.W_c, self.W_out, self.b_in, self.b_c, self.b_y ] """ look up embedding """ self.x_emb = self.emb[ self.x_v] # 1D: batch_size*n_words * window, 2D: emb_dim self.c_emb = self.emb_c[ self. c] # 1D: batch_size*n_words, 2D: window, 3D: max_len_char, 4D: window, 5D: n_c_emb self.x_emb_r = self.x_emb.reshape((x.shape[0], x.shape[1], -1)) """ convolution """ self.c_phi = T.max( T.dot( self.c_emb.reshape( (batch_size * n_words, window, max_len_char, -1)), self.W_c) + self.b_c, 2) # 1D: n_words, 2D: window, 3D: n_h_c self.x_phi = T.concatenate([self.x_emb_r, self.c_phi], axis=2) """ forward """ self.h = relu( T.dot(self.x_phi.reshape((batch_size * n_words, n_phi)), self.W_in) + self.b_in) self.o = T.dot(self.h, self.W_out) + self.b_y self.p_y_given_x = T.nnet.softmax(self.o) """ predict """ self.y_pred = T.argmax(self.o, axis=1) self.result = T.eq(self.y_pred, self.y) """ loss """ self.log_p = T.log(self.p_y_given_x)[T.arange(batch_size * n_words), self.y] self.nll = -T.sum(self.log_p) self.cost = self.nll if opt == 'sgd': self.updates = sgd(self.cost, self.params, self.emb, self.x_emb, self.lr) else: self.updates = ada_grad(self.cost, self.params, self.emb, self.x_emb, self.x, self.lr)
def __init__(self, x, c, y, n_words, batch_size, lr, init_emb, vocab_w_size, w_emb_dim, w_hidden_dim, c_emb_dim, c_hidden_dim, output_dim, vocab_c_size, window, opt): assert window % 2 == 1, 'Window size must be odd' """ input """ self.x = x # 1D: n_words * batch_size, 2D: window; elem=word id self.x_v = x.flatten() # 1D: n_words * batch_size * window; elem=word id self.c = c # 1D: n_words * batch_size, 2D: window, 3D: max_len_char, 4D: window; elem=char id self.y = y self.batch_size = batch_size self.n_words = n_words self.lr = lr n_phi = (w_emb_dim + c_hidden_dim) * window max_len_char = T.cast(self.c.shape[2], 'int32') """ params """ if init_emb is not None: self.emb = theano.shared(init_emb) else: self.emb = theano.shared(sample_weights(vocab_w_size, w_emb_dim)) self.pad = build_shared_zeros((1, c_emb_dim)) self.e_c = theano.shared(sample_norm_dist(vocab_c_size - 1, c_emb_dim)) self.emb_c = T.concatenate([self.pad, self.e_c], 0) self.W_in = theano.shared(sample_weights(n_phi, w_hidden_dim)) self.W_c = theano.shared(sample_weights(c_emb_dim * window, c_hidden_dim)) self.W_out = theano.shared(sample_weights(w_hidden_dim, output_dim)) self.b_in = theano.shared(sample_weights(w_hidden_dim)) self.b_c = theano.shared(sample_weights(c_hidden_dim)) self.b_y = theano.shared(sample_weights(output_dim)) self.params = [self.e_c, self.W_in, self.W_c, self.W_out, self.b_in, self.b_c, self.b_y] """ look up embedding """ self.x_emb = self.emb[self.x_v] # 1D: batch_size*n_words * window, 2D: emb_dim self.c_emb = self.emb_c[self.c] # 1D: batch_size*n_words, 2D: window, 3D: max_len_char, 4D: window, 5D: n_c_emb self.x_emb_r = self.x_emb.reshape((x.shape[0], x.shape[1], -1)) """ convolution """ self.c_phi = T.max(T.dot(self.c_emb.reshape((batch_size * n_words, window, max_len_char, -1)), self.W_c) + self.b_c, 2) # 1D: n_words, 2D: window, 3D: n_h_c self.x_phi = T.concatenate([self.x_emb_r, self.c_phi], axis=2) """ forward """ self.h = relu(T.dot(self.x_phi.reshape((batch_size * n_words, n_phi)), self.W_in) + self.b_in) self.o = T.dot(self.h, self.W_out) + self.b_y self.p_y_given_x = T.nnet.softmax(self.o) """ predict """ self.y_pred = T.argmax(self.o, axis=1) self.result = T.eq(self.y_pred, self.y) """ loss """ self.log_p = T.log(self.p_y_given_x)[T.arange(batch_size * n_words), self.y] self.nll = -T.sum(self.log_p) self.cost = self.nll if opt == 'sgd': self.updates = sgd(self.cost, self.params, self.emb, self.x_emb, self.lr) else: self.updates = ada_grad(self.cost, self.params, self.emb, self.x_emb, self.x, self.lr)