Esempio n. 1
0
def test_l1_unconstrained_fb():
    options = {
        'tol': 1e-6,
        'iter': 5000,
        'update_iter': 50,
        'record_iters': False
    }
    ISNR = 50.
    sigma = 10**(-ISNR / 20.)
    size = 32
    epsilon = np.sqrt(size + 2. * np.sqrt(size)) * sigma
    x = np.linspace(0, 30, size)

    W = np.ones((size, ))

    y = W * x + np.random.normal(0, sigma, size)
    g = grad_operators.l2_norm(sigma, y,
                               linear_operators.diag_matrix_operator(W))
    g.beta = 1 / sigma**2
    psi = linear_operators.diag_matrix_operator(W)
    gamma = 50
    h = prox_operators.l1_norm(gamma, psi)
    h.beta = 1.
    f = prox_operators.real_prox()
    z, diag = primal_dual.FBPD(x, options, g, f, h)
    z_fb = x
    mu = 0.5 * sigma**2
    for it in range(5000):
        z_fb = h.prox(z_fb - mu * g.grad(z_fb), mu)
    h = prox_operators.l1_norm(gamma * sigma**2, psi)
    solution = h.prox(y, 1)
    assert (diag['max_iter'] < 500)
    assert (np.isclose(z, z_fb, 1e-3).all())
    assert (np.isclose(z, solution, 1e-3).all())
Esempio n. 2
0
def test_l1_constrained():
    options = {
        'tol': 1e-5,
        'iter': 5000,
        'update_iter': 50,
        'record_iters': False
    }
    ISNR = 40.
    sigma = 10**(-ISNR / 20.)
    size = 1024
    epsilon = np.sqrt(size + 2. * np.sqrt(size)) * sigma
    x = np.linspace(0, 1 * np.pi, size)

    W = np.ones((size, ))

    y = W * x + np.random.normal(0, sigma, size)

    p = prox_operators.l2_ball(epsilon, y,
                               linear_operators.diag_matrix_operator(W))

    wav = ['db1', 'db4']
    levels = 6
    shape = (size, )
    psi = linear_operators.dictionary(wav, levels, shape)

    h = prox_operators.l1_norm(np.max(np.abs(psi.dir_op(y))) * 1e-3, psi)
    h.beta = 1.
    f = prox_operators.real_prox()
    z, diag = primal_dual.FBPD(y, options, None, f, h, p)
    assert (np.linalg.norm(z - W * y) < epsilon * 1.05)
    assert (diag['max_iter'] < 500)
    #testing warm start
    z1, diag1 = primal_dual.FBPD_warm_start(z, diag['y'], diag['z'], diag['w'],
                                            options, None, f, h, p)
    assert (diag1['max_iter'] < diag['max_iter'])
Esempio n. 3
0
def test_l1_unconstrained():
    options = {
        'tol': 1e-5,
        'iter': 500,
        'update_iter': 50,
        'record_iters': False
    }
    ISNR = 20.
    sigma = 10**(-ISNR / 20.)
    size = 1024
    epsilon = np.sqrt(size + 2. * np.sqrt(size)) * sigma
    x = np.linspace(0, 1 * np.pi, size)

    W = np.ones((size, ))

    y = W * x + np.random.normal(0, sigma, size)

    g = grad_operators.l2_norm(sigma, y,
                               linear_operators.diag_matrix_operator(W))

    wav = ['db1', 'db4']
    levels = 6
    shape = (size, )
    psi = linear_operators.dictionary(wav, levels, shape)

    h = prox_operators.l1_norm(np.max(np.abs(psi.dir_op(y))) * 5e-3, psi)
    h.beta = 1.
    f = prox_operators.real_prox()
    z, diag = primal_dual.FBPD(y, options, g, f, h)
Esempio n. 4
0
def l2_unconstrained_solver(
    data,
    warm_start,
    sigma,
    weights,
    psi,
    sigma_signal=1e-3,
    options={
        'tol': 1e-5,
        'iter': 5000,
        'update_iter': 50,
        'record_iters': False,
        'positivity': True,
        'real': False
    }):
    """
    Solve unconstrained l1 regularization problem
    """

    phi = linear_operators.diag_matrix_operator(weights)
    g = grad_operators.l2_norm(sigma, data, phi)
    g.beta = np.max(np.abs(weights))**2 / sigma**2
    h = prox_operators.l2_square_norm(sigma_signal, psi)
    f = None
    if options['real'] == True:
        if options["positivity"] == True:
            f = prox_operators.positive_prox()
        else:
            f = prox_operators.reality_prox()
    return primal_dual.FBPD(warm_start, options, g, f, h)
Esempio n. 5
0
def l1_constrained_solver(
    data,
    warm_start,
    sigma,
    weights,
    psi,
    beta=1e-3,
    options={
        'tol': 1e-5,
        'iter': 5000,
        'update_iter': 50,
        'record_iters': False,
        'positivity': False,
        'real': False
    }):
    """
    Solve constrained l1 regularization problem
    """
    phi = linear_operators.diag_matrix_operator(weights)
    size = len(np.ravel(data))
    epsilon = np.sqrt(size + 2 * np.sqrt(2 * size)) * sigma
    p = prox_operators.l2_ball(epsilon, data, phi)
    p.beta = np.max(np.abs(weights))**2
    f = None
    if options['real'] == True:
        f = prox_operators.real_prox()
    if options["positivity"] == True:
        f = prox_operators.positive_prox()
    h = prox_operators.l1_norm(np.max(np.abs(psi.dir_op(data))) * beta, psi)
    return primal_dual.FBPD(warm_start, options, None, f, h, p)
Esempio n. 6
0
def l1_poissonian_unconstrained_solver(
    data,
    warm_start,
    weights,
    background,
    psi,
    beta=1e-3,
    options={
        'tol': 1e-5,
        'iter': 5000,
        'update_iter': 50,
        'record_iters': False,
        'positivity': False,
        'real': False
    }):
    """
    Solve unconstrained l1 regularization problem with poisson noise
    """

    phi = linear_operators.diag_matrix_operator(weights)
    p = prox_operators.poisson_loglike(data, background, phi)
    p.beta = np.max(np.abs(weights))**2
    if beta <= 0:
        h = None
    else:
        h = prox_operators.l1_norm(beta, psi)
    if options['real'] == True:
        if options["positivity"] == True:
            f = prox_operators.positive_prox()
        else:
            raise Exception("Positivity required.")
    f = None
    return primal_dual.FBPD(warm_start, options, None, f, h, p)
Esempio n. 7
0
def l1_poissonian_constrained_solver(
    data,
    warm_start,
    sigma,
    weights,
    background,
    psi,
    beta=1e-3,
    options={
        'tol': 1e-5,
        'iter': 5000,
        'update_iter': 50,
        'record_iters': False,
        'positivity': False,
        'real': False
    }):
    """
    Solve constrained l1 regularization problem with poisson noise
    """
    phi = linear_operators.diag_matrix_operator(weights)
    size = len(np.ravel(data))
    epsilon = sigma
    p = prox_operators.poisson_loglike_ball(epsilon, data, background, 50, phi)
    p.beta = np.max(np.abs(weights))**2
    f = None
    if options['real'] == True:
        if options["positivity"] == True:
            f = prox_operators.positive_prox()
        else:
            raise Exception("Positivity required.")
    h = prox_operators.l1_norm(np.max(np.abs(psi.dir_op(data))) * beta, psi)
    return primal_dual.FBPD(warm_start, options, None, f, h, p)
Esempio n. 8
0
def test_diag_matrix_op():
    A = np.random.normal(0, 10., (10)) * 1j
    op = linear_operators.diag_matrix_operator(A)
    inp = np.random.normal(0, 10., (10))
    out = A * inp
    forward_operator(op, inp, out)
    inp = np.random.normal(0, 10., (10))
    out = np.conj(A) * inp
    adjoint_operator(op, inp, out)
Esempio n. 9
0
def tv_unconstrained_solver(
    data,
    warm_start,
    sigma,
    weights,
    beta=1e-3,
    options={
        'tol': 1e-5,
        'iter': 5000,
        'update_iter': 50,
        'record_iters': False,
        'positivity': False,
        'real': False
    }):
    """
    Solve unconstrained l1 regularization problem
    """

    phi = linear_operators.diag_matrix_operator(weights)
    g = grad_operators.l2_norm(sigma, data, phi)
    g.beta = np.max(np.abs(weights))**2 / sigma**2
    if beta <= 0:
        h = None
    else:

        def forward(x):
            if x.ndim == 2:
                out = np.zeros((2, x.shape[0] - 1, x.shape[1] - 1))
                out[0, :, :] = (x[:-1, :-1] - x[1:, :-1]) / 2
                out[1, :, :] = (x[:-1, :-1] - x[:-1, 1:]) / 2
                return out
            else:
                raise Exception("Sorry, only two dimensions for now.")

        def backward(x):
            if x.ndim == 3:
                out = np.zeros((x.shape[1] + 1, x.shape[2] + 1))
                out[:-1, :-1] += x[0, :, :] / 2
                out[:-1, :-1] += x[1, :, :] / 2
                out[1:, :-1] += -x[0, :, :] / 2
                out[:-1, 1:] += -x[1, :, :] / 2
                return out
            else:
                raise Exception("Sorry, only two dimensions for now.")

        psi = linear_operators.function_wrapper(forward, backward)
        h = prox_operators.l21_norm(beta, 0, psi)
    f = None
    if options['real'] == True:
        if options["positivity"] == True:
            f = prox_operators.positive_prox()
        else:
            f = prox_operators.real_prox()
    return primal_dual.FBPD(warm_start, options, g, f, h)
Esempio n. 10
0
def tv_constrained_solver(
    data,
    warm_start,
    sigma,
    weights,
    beta=1e-3,
    options={
        'tol': 1e-5,
        'iter': 5000,
        'update_iter': 50,
        'record_iters': False,
        'positivity': False,
        'real': False
    }):
    """
    Solve constrained tv regularization problem
    """
    phi = linear_operators.diag_matrix_operator(weights)
    size = len(np.ravel(data))
    epsilon = np.sqrt(size + 2 * np.sqrt(2 * size)) * sigma
    p = prox_operators.l2_ball(epsilon, data, phi)
    p.beta = np.max(np.abs(weights))**2
    f = None
    if options['real'] == True:
        f = prox_operators.real_prox()
    if options["positivity"] == True:
        f = prox_operators.positive_prox()

    def forward(x):
        if x.ndim == 2:
            out = np.zeros((2, x.shape[0] - 1, x.shape[1] - 1))
            out[0, :, :] = (x[:-1, :-1] - x[1:, :-1]) / 2
            out[1, :, :] = (x[:-1, :-1] - x[:-1, 1:]) / 2
            return out
        else:
            raise Exception("Sorry, only two dimensions for now.")

    def backward(x):
        if x.ndim == 3:
            out = np.zeros((x.shape[1] + 1, x.shape[2] + 1))
            out[:-1, :-1] += x[0, :, :] / 2
            out[:-1, :-1] += x[1, :, :] / 2
            out[1:, :-1] += -x[0, :, :] / 2
            out[:-1, 1:] += -x[1, :, :] / 2
            return out
        else:
            raise Exception("Sorry, only two dimensions for now.")

    psi = linear_operators.function_wrapper(forward, backward)
    h = prox_operators.l21_norm(
        np.sqrt(np.max(np.sum(np.abs(psi.dir_op(data))**2), axis=0)) * beta, 0,
        psi)
    return primal_dual.FBPD(warm_start, options, None, f, h, p)
output_dir = 'output/'

options = {'tol': 1e-5, 'iter': 5000, 'update_iter': 50, 'record_iters': False}
ISNR = 20.
sigma = 10**(-ISNR / 20.)
size = 1024
epsilon = np.sqrt(size + 2. * np.sqrt(size)) * sigma
x = np.linspace(0, 1 * np.pi, size)

W = np.ones((size, ))

y = W * x + np.random.normal(0, sigma, size)

p = prox_operators.l2_ball(epsilon, y,
                           linear_operators.diag_matrix_operator(W))
p.beta = 1.

wav = ['db1', 'db4']
levels = 6
shape = (size, )
psi = linear_operators.dictionary(wav, levels, shape)

h = prox_operators.l1_norm(np.max(np.abs(psi.dir_op(y))) * 1e-3, psi)
h.beta = 1.
f = prox_operators.real_prox()
z, diag = primal_dual.FBPD(y, options, None, f, h, p, None)

plt.plot(np.real(y))
plt.plot(np.real(x))
plt.plot(np.real(z))
sys.path.insert(0, '..')

output_dir = 'output/'

options = {'tol': 1e-5, 'iter': 5000, 'update_iter': 50, 'record_iters': False}
ISNR = 20.
sigma = 10**(-ISNR / 20.)
size = 1024
epsilon = np.sqrt(size + 2. * np.sqrt(size)) * sigma
x = np.linspace(0, 1 * np.pi, size)

W = np.ones((size,))

y = W * x + np.random.normal(0, sigma, size)

g = grad_operators.l2_norm(sigma, y, linear_operators.diag_matrix_operator(W))
g.beta = 1. / sigma**2

wav = ['db1', 'db4']
levels = 6
shape = (size,)
psi = linear_operators.dictionary(wav, levels, shape)

h = prox_operators.l1_norm(np.max(np.abs(psi.dir_op(y))) * 5e-3, psi)
h.beta = 1.
f = prox_operators.real_prox()
z, diag = primal_dual.FBPD(y, options, g, f, h)

plt.plot(np.real(y))
plt.plot(np.real(x))
plt.plot(np.real(z))