def main(): # ------------------------------------------------ Training Phase ------------------------------------------------ # image_files = random.sample(glob.glob('E:\\work\\pedestrian_crop_python_process\\Pedestrain_cropDB\\train\\0\\*.bmp'), 10) # image_files = random.sample(glob.glob('data/0.normal/*.bmp'), 10) # data_in = data_read(image_files) opt = Options().parse() opt.iwidth = map_x_size opt.iheight = map_y_size #---new--- depth for size ctinit = map_x_size while ctinit > 4: ctinit = ctinit / 2 opt.ctinit = int(ctinit) #---new--- opt.batchsize = 64 opt.epochs = 1000 opt.mask = 0 # 1: masking for simulation map opt.time = datetime.now() train_dataloader = load_data( './data/unsupervised/train/') # path to trainset result_path = './results/{0}/'.format( opt.time) # reconstructions durnig the training if not os.path.isdir(result_path): os.mkdir(result_path) # dataloader = load_data(opt, data_in) model = AAE_basic(opt, train_dataloader) model.train()
map_x_size = 64 map_y_size = 64 map_layer_num = 3 opt = Options().parse() opt.iwidth = map_x_size opt.iheight = map_y_size opt.batchsize = 1 opt.ngpu = 0 opt.gpu_ids = -1 # ---new--- ctinit = map_x_size while ctinit > 4: ctinit = ctinit / 2 opt.ctinit = int(ctinit) # ---new--- # opt.mask = 1 model_saved = False d_loss = None g_loss = None recon_loss = None z_loss = None N = 1000 fake = None P = None Q = None D = None