def test_base_dlt_init(estimator): dlt = DLT(estimator=estimator) is_fitted = dlt.is_fitted() model_data_input = dlt.get_training_data_input() model_param_names = dlt._model.get_model_param_names() init_values = dlt._model.get_init_values() # model is not yet fitted assert not is_fitted # should only be initialized and not set assert not model_data_input # model param names should already be set assert model_param_names # callable is not implemented yet assert not init_values
def test_dlt_is_fitted(iclaims_training_data, estimator, keep_samples, point_method): df = iclaims_training_data df['claims'] = np.log(df['claims']) regressor_col = ['trend.unemploy'] dlt = DLT( response_col='claims', date_col='week', regressor_col=regressor_col, seasonality=52, seed=8888, num_warmup=50, num_sample=50, verbose=False, estimator=estimator ) dlt.fit(df, keep_samples=keep_samples, point_method=point_method) is_fitted = dlt.is_fitted() # still True when keep_samples is False assert is_fitted