Esempio n. 1
0
def read_hdf5(fid,
              variables=[
                  'geo_info', 'geo_spec_all', 'ao_spec', 'ao_spherical',
                  'mo_coeff_all', 'mo_energy_all', 'mo_occ_all', 'sym',
                  'index_list'
              ]):
    '''Reads all variables specified in :literal:`variables` from an HDF5 file
  created with :literal:`write_hdf5` and appends this data to the globals() of 
  this module. 
  '''

    from orbkit.output import hdf5_open, hdf52dict

    # Read HDF5 File
    display('Reading Hierarchical Data Format file (HDF5) File from %s' % fid)
    data_stored = []
    for HDF5_file in hdf5_open(fid, mode='r'):
        for i in variables:
            try:
                globals()[i] = hdf52dict(i, HDF5_file)
                data_stored.append(i)
                if i == 'sym':
                    s = dict(globals()[i])
                    globals()[i] = {}
                    for k, l in s.items():
                        globals()[i][k] = int(l)
            except KeyError:
                pass

    if not data_stored:
        raise IOError(
            'Could not find any data in `%s` for the selected `variables`.' %
            fid)

    display('\tFound: ' + ', '.join(data_stored))
Esempio n. 2
0
def save_hdf5(fid,
              variables=[
                  'geo_info', 'geo_spec_all', 'ao_spec', 'ao_spherical',
                  'mo_coeff_all', 'mo_energy_all', 'mo_occ_all', 'sym',
                  'index_list'
              ],
              hdf5mode='w',
              **kwargs):
    '''Writes all global variables specified in :literal:`variables` and all
  additional :literal:`kwargs` to an HDF5 file. 
  '''

    from orbkit.output import hdf5_open, hdf5_append

    # Save HDF5 File
    display('Saving Hierarchical Data Format file (HDF5) to %s...' % fid)
    data_stored = []
    for HDF5_file in hdf5_open(fid, mode=hdf5mode):
        for i in variables:
            if i in globals():
                data = globals()[i]
                if not (data == [] or data is None):
                    if i == 'sym':
                        data = numpy.array([[k, l] for k, l in data.items()])
                    hdf5_append(data, HDF5_file, name=i)
                    data_stored.append(i)
            elif i not in kwargs:
                raise ValueError(
                    'Variable `%s` is not in globals() or in **kwargs' % i)

        for j in kwargs.keys():
            hdf5_append(kwargs[j], HDF5_file, name=j)
            data_stored.append(j)

    display('\tContent: ' + ', '.join(data_stored))
Esempio n. 3
0
 def hdf5_save(self,fid='out.h5',group='/ci:0',mode='w'):
   from orbkit.output import hdf5_open,hdf5_append
   from copy import copy
   for hdf5_file in hdf5_open(fid,mode=mode):
     dct = copy(self.todict())
     dct['info'] = numpy.array(dct['info'].items(),dtype=str)
     hdf5_append(dct,hdf5_file,name=group)
Esempio n. 4
0
 def hdf5_read(self,fid='out.h5',group='/ci:0'):
   from orbkit.output import hdf5_open,hdf52dict
   for hdf5_file in hdf5_open(fid,mode='r'):
     for key in self.__dict__.keys():
       try:
         self.__dict__[key] = hdf52dict('%s/%s' % (group,key),hdf5_file)
       except KeyError:
         self.__dict__[key] = hdf5_file['%s' % group].attrs[key]
     self.__dict__['info'] = dict(self.__dict__['info'])
Esempio n. 5
0
def run_orbkit(use_qc=None, check_options=True, standalone=False):
    '''Controls the execution of all computational tasks.
  
  **Parameters:**
  
  use_qc : QCinfo, optional
    If not None, the reading of a quantum chemistry output is omitted and
    the given QCinfo class is used for all computational tasks. 
    (See :ref:`Central Variables` in the manual for details on QCinfo.) 
  check_options : bool, optional
    If True, the specified options will be validated. 
  
  **Returns:**
  
  data : type and shape depend on the options.
    Contains orbkit's output. 
    See :ref:`High-Level Interface` in the manual for details.
  '''
    # Set some global variables
    global qc

    # Display program information
    display(lgpl_short)

    # Check for the correctness of orbkit.options
    if check_options:
        display('Checking orbkit.options...\n')
        options.check_options(display=display,
                              interactive=False,
                              info=True,
                              check_io=(use_qc is None))

    # Measurement of required execution time
    t = [time.time()]

    # Do we need to read out the info of all MOs?
    if (options.mo_set or options.calc_mo) is not False:
        options.all_mo = True

    if use_qc is None:
        # Read the input file
        qc = read.main_read(options.filename,
                            itype=options.itype,
                            all_mo=options.all_mo,
                            spin=options.spin,
                            cclib_parser=options.cclib_parser)
    else:
        # Use a user defined QCinfo class.
        qc = use_qc

    display('\nSetting up the grid...')
    if options.grid_file is not None:
        # Read the grid from an external file
        grid.read(options.grid_file)
    elif options.adjust_grid is not None:
        # Adjust the grid to geo_spec
        extend, step = options.adjust_grid
        grid.adjust_to_geo(qc, extend=extend, step=step)
    elif options.random_grid:
        # Create a randomized grid
        grid.random_grid(qc.geo_spec)

    # Initialize grid
    grid.grid_init(is_vector=options.is_vector)
    if options.is_vector:
        grid.is_regular = False
    display(grid.get_grid())  # Display the grid

    if not grid.is_regular and options.center_grid is not None:
        raise IOError(
            'The option --center is only supported for regular grids.')
    elif options.center_grid is not None:
        atom = grid.check_atom_select(options.center_grid,
                                      qc.geo_info,
                                      qc.geo_spec,
                                      interactive=True,
                                      display=display)
        # Center the grid to a specific atom and (0,0,0) if requested
        grid.center_grid(qc.geo_spec[atom - 1], display=display)

    if check_options or standalone:
        options.check_grid_output_compatibilty()

    t.append(time.time())  # A new time step

    # The calculation of all AOs (--calc_ao)
    if options.calc_ao != False:
        data = extras.calc_ao(qc, drv=options.drv, otype=options.otype)

        t.append(time.time())  # Final time
        good_bye_message(t)
        return data

    # The calculation of selected MOs (--calc_mo) or
    # the density formed by selected MOs (--mo_set)
    if (options.mo_set or options.calc_mo) != False:
        # What should the program do?
        if options.calc_mo != False:
            fid_mo_list = options.calc_mo
        elif options.mo_set != False:
            fid_mo_list = options.mo_set

        # Call the function for actual calculation
        if options.calc_mo != False:
            data = extras.calc_mo(qc,
                                  fid_mo_list,
                                  drv=options.drv,
                                  otype=options.otype)
        elif options.mo_set != False:
            data = extras.mo_set(qc,
                                 fid_mo_list,
                                 drv=options.drv,
                                 laplacian=options.laplacian,
                                 otype=options.otype)

        t.append(time.time())  # Final time
        good_bye_message(t)
        return data

    if options.gross_atomic_density is not None:
        atom = options.gross_atomic_density
        rho_atom = extras.numerical_mulliken_charges(atom, qc)

        if not grid.is_vector:
            mulliken_num = rho_atom[1]
            rho_atom = rho_atom[0]

        if not options.no_output:
            fid = '%s.h5' % options.outputname
            display('\nSaving to Hierarchical Data Format file (HDF5)...' +
                    '\n\t%(o)s' % {'o': fid})
            output.hdf5_write(fid,
                              mode='w',
                              gname='',
                              atom=core.numpy.array(atom),
                              geo_info=qc.geo_info,
                              geo_spec=qc.geo_spec,
                              gross_atomic_density=rho_atom,
                              x=grid.x,
                              y=grid.y,
                              z=grid.z)
            if not options.is_vector:
                output.hdf5_write(
                    fid,
                    mode='a',
                    gname='/numerical_mulliken_population_analysis',
                    **mulliken_num)

        t.append(time.time())
        good_bye_message(t)
        return rho_atom

    if options.mo_tefd is not None:
        mos = options.mo_tefd
        ao_list = core.ao_creator(qc.geo_spec, qc.ao_spec)
        mo_tefd = []
        index = []
        for i, j in mos:
            mo_tefd.append([])
            index.append([])
            for ii_d in options.drv:
                display('\nMO-TEFD: %s->%s %s-component' % (i, j, ii_d))
                tefd = extras.mo_transition_flux_density(i,
                                                         j,
                                                         qc,
                                                         drv=ii_d,
                                                         ao_list=ao_list)
                mo_tefd[-1].append(tefd)
                index[-1].append('%s->%s:%s' % (i, j, ii_d))

        if not options.no_output:
            from numpy import array
            fid = '%s.h5' % options.outputname
            display('\nSaving to Hierarchical Data Format file (HDF5)...' +
                    '\n\t%(o)s' % {'o': fid})
            HDF5_File = output.hdf5_open(fid, mode='w')
            data = {
                'geo_info': array(qc.geo_info),
                'geo_spec': array(qc.geo_spec),
                'mo_tefd:info': array(index),
                'mo_tefd': array(mo_tefd),
                'x': grid.x,
                'y': grid.y,
                'z': grid.z
            }
            output.hdf5_append(data, HDF5_File, name='')
            HDF5_File.close()

        t.append(time.time())
        good_bye_message(t)
        return mo_tefd

    t.append(time.time())  # A new time step

    # Compute the (derivative of the) electron density
    if options.no_slice:
        data = core.rho_compute_no_slice(qc,
                                         drv=options.drv,
                                         laplacian=options.laplacian,
                                         return_components=False)

    else:
        data = core.rho_compute(qc,
                                drv=options.drv,
                                slice_length=options.slice_length,
                                laplacian=options.laplacian,
                                numproc=options.numproc)
    if options.drv is None:
        rho = data
    elif options.laplacian:
        rho, delta_rho, laplacian_rho = data
    else:
        rho, delta_rho = data

    # Compute the reduced electron density if requested
    if options.z_reduced_density:
        if grid.is_vector:
            display('\nSo far, reducing the density is not supported for ' +
                    'vector grids.\nSkipping the reduction...\n')
        elif options.drv is not None:
            display(
                '\nSo far, reducing the density is not supported for ' +
                'the derivative of the density.\nSkipping the reduction...\n')
        else:
            from scipy import integrate
            display('\nReducing the density with respect to the z-axis.\n')
            rho = integrate.simps(rho,
                                  grid.x,
                                  dx=grid.delta_[0],
                                  axis=0,
                                  even='avg')
            rho = integrate.simps(rho,
                                  grid.y,
                                  dx=grid.delta_[1],
                                  axis=0,
                                  even='avg')

    t.append(time.time())  # A new time step

    # Generate the output requested
    if not options.no_output:
        output_written = output.main_output(rho,
                                            qc.geo_info,
                                            qc.geo_spec,
                                            outputname=options.outputname,
                                            otype=options.otype,
                                            data_id='rho',
                                            omit=['vmd', 'mayavi'],
                                            mo_spec=qc.mo_spec)
        if options.drv is not None:
            output_written.extend(
                output.main_output(delta_rho,
                                   qc.geo_info,
                                   qc.geo_spec,
                                   outputname=options.outputname,
                                   otype=options.otype,
                                   data_id='delta_rho',
                                   omit=['vmd', 'mayavi'],
                                   mo_spec=qc.mo_spec,
                                   drv=options.drv))
        if options.laplacian:
            output_written.extend(
                output.main_output(laplacian_rho,
                                   qc.geo_info,
                                   qc.geo_spec,
                                   outputname=options.outputname +
                                   '_laplacian',
                                   otype=options.otype,
                                   data_id='laplacian_rho',
                                   omit=['vmd', 'mayavi'],
                                   mo_spec=qc.mo_spec))
        if 'vmd' in options.otype:
            # Create VMD network
            display('\nCreating VMD network file...' +
                    '\n\t%(o)s.vmd' % {'o': options.outputname})
            cube_files = []
            for i in output_written:
                if i.endswith('.cb'):
                    cube_files.append(i)
            output.vmd_network_creator(options.outputname,
                                       cube_files=cube_files)

    t.append(time.time())  # Final time

    good_bye_message(t)

    if 'mayavi' in options.otype:
        plt_data = [rho]
        datalabels = ['rho']
        if options.drv is not None:
            plt_data.extend(delta_rho)
            datalabels.extend(
                ['d/d%s of %s' % (ii_d, 'rho') for ii_d in options.drv])
        if options.laplacian:
            plt_data.append(laplacian_rho)
            datalabels.append('laplacian of rho')
        output.main_output(plt_data,
                           qc.geo_info,
                           qc.geo_spec,
                           otype='mayavi',
                           datalabels=datalabels)

    # Return the computed data, i.e., rho for standard, and (rho,delta_rho)
    # for derivative calculations. For laplacian (rho,delta_rho,laplacian_rho)
    return data
Esempio n. 6
0
def calc_ao(qc, drv=None, otype=None, ofid=None):  
  '''Computes and saves all atomic orbital or a derivative thereof.
  
  **Parameters:**
   
    qc.geo_spec, qc.geo_info, qc.ao_spec :
      See :ref:`Central Variables` for details.
    otype : str or list of str, optional
      Specifies output file type. See :data:`otypes` for details.
    ofid : str, optional
      Specifies output file name. If None, the filename will be based on
      :mod:`orbkit.options.outputname`.
    drv : int or string, {None, 'x', 'y', 'z', 'xx', 'xy', ...}, optional
      If not None, a derivative calculation of the atomic orbitals 
      is requested.
    
  **Returns:**    
  
    ao_list : numpy.ndarray, shape=((NAO,) + N)
      Contains the computed NAO atomic orbitals on a grid. Is only returned, if
      otype is None.
  '''
  from omp_functions import run
  
  if ofid is None:
    ofid = options.outputname
  dstr = '' if drv is None else '_d%s' % drv
  
  ao_spec = []
  lxlylz = []
  datalabels = []
  for sel_ao in range(len(qc.ao_spec)):
    if 'exp_list' in qc.ao_spec[sel_ao].keys():
      l = qc.ao_spec[sel_ao]['exp_list']
    else:
      l = core.exp[core.lquant[qc.ao_spec[sel_ao]['type']]]
    lxlylz.extend(l)
    for i in l:
      ao_spec.append(qc.ao_spec[sel_ao].copy())
      ao_spec[-1]['exp_list'] = [i]
      datalabels.append('lxlylz=%s,atom=%d' %(i,ao_spec[-1]['atom']))
  
  global_args = {'geo_spec':qc.geo_spec,
                 'geo_info':qc.geo_info,
                 'ao_spec':ao_spec,
                 'drv':drv,
                 'x':grid.x,
                 'y':grid.y,
                 'z':grid.z,
                 'is_vector':grid.is_vector,
                 'otype':otype,
                 'ofid':ofid}
  display('Starting the computation of the %d atomic orbitals'%len(ao_spec)+
         (' using %d subprocesses.' % options.numproc if options.numproc > 1 
          else '.' )
          )
  ao = run(get_ao,x=numpy.arange(len(ao_spec)).reshape((-1,1)),
           numproc=options.numproc,display=display,
           initializer=initializer,global_args=global_args)
    
  if otype is None or 'h5' in otype or 'mayavi' in otype:   
    ao_list = []
    for i in ao:
      ao_list.extend(i)      
    ao_list = numpy.array(ao_list)
    if otype is None or options.no_output:
      return ao_list
    
    if 'h5' in otype:
      import h5py
      fid = '%s_AO%s.h5' % (ofid,dstr)
      display('Saving to Hierarchical Data Format file (HDF5)...\n\t%s' % fid)
      output.hdf5_write(fid,mode='w',gname='general_info',
                        x=grid.x,y=grid.y,z=grid.z,
                        geo_info=qc.geo_info,geo_spec=qc.geo_spec,
                        lxlylz=numpy.array(lxlylz,dtype=numpy.int64),
                        aolabels=numpy.array(datalabels),
                        grid_info=numpy.array(grid.is_vector,dtype=int))      
      for f in output.hdf5_open(fid,mode='a'):
        output.hdf5_append(ao_spec,f,name='ao_spec')
        output.hdf5_append(ao_list,f,name='ao_list')
      
    if 'mayavi' in otype:
      output.main_output(ao_list,qc.geo_info,qc.geo_spec,
                         otype='mayavi',datalabels=datalabels)

  if 'vmd' in otype and options.vector is None:
    fid = '%s_AO%s' % (ofid,dstr)
    display('\nCreating VMD network file...' +
                    '\n\t%(o)s.vmd' % {'o': fid})
    output.vmd_network_creator(fid,
                            cube_files=['%s_AO%s_%03d.cb' % (ofid,
                                        dstr,x) for x in range(len(ao_spec))])