def read_hdf5(fid, variables=[ 'geo_info', 'geo_spec_all', 'ao_spec', 'ao_spherical', 'mo_coeff_all', 'mo_energy_all', 'mo_occ_all', 'sym', 'index_list' ]): '''Reads all variables specified in :literal:`variables` from an HDF5 file created with :literal:`write_hdf5` and appends this data to the globals() of this module. ''' from orbkit.output import hdf5_open, hdf52dict # Read HDF5 File display('Reading Hierarchical Data Format file (HDF5) File from %s' % fid) data_stored = [] for HDF5_file in hdf5_open(fid, mode='r'): for i in variables: try: globals()[i] = hdf52dict(i, HDF5_file) data_stored.append(i) if i == 'sym': s = dict(globals()[i]) globals()[i] = {} for k, l in s.items(): globals()[i][k] = int(l) except KeyError: pass if not data_stored: raise IOError( 'Could not find any data in `%s` for the selected `variables`.' % fid) display('\tFound: ' + ', '.join(data_stored))
def save_hdf5(fid, variables=[ 'geo_info', 'geo_spec_all', 'ao_spec', 'ao_spherical', 'mo_coeff_all', 'mo_energy_all', 'mo_occ_all', 'sym', 'index_list' ], hdf5mode='w', **kwargs): '''Writes all global variables specified in :literal:`variables` and all additional :literal:`kwargs` to an HDF5 file. ''' from orbkit.output import hdf5_open, hdf5_append # Save HDF5 File display('Saving Hierarchical Data Format file (HDF5) to %s...' % fid) data_stored = [] for HDF5_file in hdf5_open(fid, mode=hdf5mode): for i in variables: if i in globals(): data = globals()[i] if not (data == [] or data is None): if i == 'sym': data = numpy.array([[k, l] for k, l in data.items()]) hdf5_append(data, HDF5_file, name=i) data_stored.append(i) elif i not in kwargs: raise ValueError( 'Variable `%s` is not in globals() or in **kwargs' % i) for j in kwargs.keys(): hdf5_append(kwargs[j], HDF5_file, name=j) data_stored.append(j) display('\tContent: ' + ', '.join(data_stored))
def hdf5_save(self,fid='out.h5',group='/ci:0',mode='w'): from orbkit.output import hdf5_open,hdf5_append from copy import copy for hdf5_file in hdf5_open(fid,mode=mode): dct = copy(self.todict()) dct['info'] = numpy.array(dct['info'].items(),dtype=str) hdf5_append(dct,hdf5_file,name=group)
def hdf5_read(self,fid='out.h5',group='/ci:0'): from orbkit.output import hdf5_open,hdf52dict for hdf5_file in hdf5_open(fid,mode='r'): for key in self.__dict__.keys(): try: self.__dict__[key] = hdf52dict('%s/%s' % (group,key),hdf5_file) except KeyError: self.__dict__[key] = hdf5_file['%s' % group].attrs[key] self.__dict__['info'] = dict(self.__dict__['info'])
def run_orbkit(use_qc=None, check_options=True, standalone=False): '''Controls the execution of all computational tasks. **Parameters:** use_qc : QCinfo, optional If not None, the reading of a quantum chemistry output is omitted and the given QCinfo class is used for all computational tasks. (See :ref:`Central Variables` in the manual for details on QCinfo.) check_options : bool, optional If True, the specified options will be validated. **Returns:** data : type and shape depend on the options. Contains orbkit's output. See :ref:`High-Level Interface` in the manual for details. ''' # Set some global variables global qc # Display program information display(lgpl_short) # Check for the correctness of orbkit.options if check_options: display('Checking orbkit.options...\n') options.check_options(display=display, interactive=False, info=True, check_io=(use_qc is None)) # Measurement of required execution time t = [time.time()] # Do we need to read out the info of all MOs? if (options.mo_set or options.calc_mo) is not False: options.all_mo = True if use_qc is None: # Read the input file qc = read.main_read(options.filename, itype=options.itype, all_mo=options.all_mo, spin=options.spin, cclib_parser=options.cclib_parser) else: # Use a user defined QCinfo class. qc = use_qc display('\nSetting up the grid...') if options.grid_file is not None: # Read the grid from an external file grid.read(options.grid_file) elif options.adjust_grid is not None: # Adjust the grid to geo_spec extend, step = options.adjust_grid grid.adjust_to_geo(qc, extend=extend, step=step) elif options.random_grid: # Create a randomized grid grid.random_grid(qc.geo_spec) # Initialize grid grid.grid_init(is_vector=options.is_vector) if options.is_vector: grid.is_regular = False display(grid.get_grid()) # Display the grid if not grid.is_regular and options.center_grid is not None: raise IOError( 'The option --center is only supported for regular grids.') elif options.center_grid is not None: atom = grid.check_atom_select(options.center_grid, qc.geo_info, qc.geo_spec, interactive=True, display=display) # Center the grid to a specific atom and (0,0,0) if requested grid.center_grid(qc.geo_spec[atom - 1], display=display) if check_options or standalone: options.check_grid_output_compatibilty() t.append(time.time()) # A new time step # The calculation of all AOs (--calc_ao) if options.calc_ao != False: data = extras.calc_ao(qc, drv=options.drv, otype=options.otype) t.append(time.time()) # Final time good_bye_message(t) return data # The calculation of selected MOs (--calc_mo) or # the density formed by selected MOs (--mo_set) if (options.mo_set or options.calc_mo) != False: # What should the program do? if options.calc_mo != False: fid_mo_list = options.calc_mo elif options.mo_set != False: fid_mo_list = options.mo_set # Call the function for actual calculation if options.calc_mo != False: data = extras.calc_mo(qc, fid_mo_list, drv=options.drv, otype=options.otype) elif options.mo_set != False: data = extras.mo_set(qc, fid_mo_list, drv=options.drv, laplacian=options.laplacian, otype=options.otype) t.append(time.time()) # Final time good_bye_message(t) return data if options.gross_atomic_density is not None: atom = options.gross_atomic_density rho_atom = extras.numerical_mulliken_charges(atom, qc) if not grid.is_vector: mulliken_num = rho_atom[1] rho_atom = rho_atom[0] if not options.no_output: fid = '%s.h5' % options.outputname display('\nSaving to Hierarchical Data Format file (HDF5)...' + '\n\t%(o)s' % {'o': fid}) output.hdf5_write(fid, mode='w', gname='', atom=core.numpy.array(atom), geo_info=qc.geo_info, geo_spec=qc.geo_spec, gross_atomic_density=rho_atom, x=grid.x, y=grid.y, z=grid.z) if not options.is_vector: output.hdf5_write( fid, mode='a', gname='/numerical_mulliken_population_analysis', **mulliken_num) t.append(time.time()) good_bye_message(t) return rho_atom if options.mo_tefd is not None: mos = options.mo_tefd ao_list = core.ao_creator(qc.geo_spec, qc.ao_spec) mo_tefd = [] index = [] for i, j in mos: mo_tefd.append([]) index.append([]) for ii_d in options.drv: display('\nMO-TEFD: %s->%s %s-component' % (i, j, ii_d)) tefd = extras.mo_transition_flux_density(i, j, qc, drv=ii_d, ao_list=ao_list) mo_tefd[-1].append(tefd) index[-1].append('%s->%s:%s' % (i, j, ii_d)) if not options.no_output: from numpy import array fid = '%s.h5' % options.outputname display('\nSaving to Hierarchical Data Format file (HDF5)...' + '\n\t%(o)s' % {'o': fid}) HDF5_File = output.hdf5_open(fid, mode='w') data = { 'geo_info': array(qc.geo_info), 'geo_spec': array(qc.geo_spec), 'mo_tefd:info': array(index), 'mo_tefd': array(mo_tefd), 'x': grid.x, 'y': grid.y, 'z': grid.z } output.hdf5_append(data, HDF5_File, name='') HDF5_File.close() t.append(time.time()) good_bye_message(t) return mo_tefd t.append(time.time()) # A new time step # Compute the (derivative of the) electron density if options.no_slice: data = core.rho_compute_no_slice(qc, drv=options.drv, laplacian=options.laplacian, return_components=False) else: data = core.rho_compute(qc, drv=options.drv, slice_length=options.slice_length, laplacian=options.laplacian, numproc=options.numproc) if options.drv is None: rho = data elif options.laplacian: rho, delta_rho, laplacian_rho = data else: rho, delta_rho = data # Compute the reduced electron density if requested if options.z_reduced_density: if grid.is_vector: display('\nSo far, reducing the density is not supported for ' + 'vector grids.\nSkipping the reduction...\n') elif options.drv is not None: display( '\nSo far, reducing the density is not supported for ' + 'the derivative of the density.\nSkipping the reduction...\n') else: from scipy import integrate display('\nReducing the density with respect to the z-axis.\n') rho = integrate.simps(rho, grid.x, dx=grid.delta_[0], axis=0, even='avg') rho = integrate.simps(rho, grid.y, dx=grid.delta_[1], axis=0, even='avg') t.append(time.time()) # A new time step # Generate the output requested if not options.no_output: output_written = output.main_output(rho, qc.geo_info, qc.geo_spec, outputname=options.outputname, otype=options.otype, data_id='rho', omit=['vmd', 'mayavi'], mo_spec=qc.mo_spec) if options.drv is not None: output_written.extend( output.main_output(delta_rho, qc.geo_info, qc.geo_spec, outputname=options.outputname, otype=options.otype, data_id='delta_rho', omit=['vmd', 'mayavi'], mo_spec=qc.mo_spec, drv=options.drv)) if options.laplacian: output_written.extend( output.main_output(laplacian_rho, qc.geo_info, qc.geo_spec, outputname=options.outputname + '_laplacian', otype=options.otype, data_id='laplacian_rho', omit=['vmd', 'mayavi'], mo_spec=qc.mo_spec)) if 'vmd' in options.otype: # Create VMD network display('\nCreating VMD network file...' + '\n\t%(o)s.vmd' % {'o': options.outputname}) cube_files = [] for i in output_written: if i.endswith('.cb'): cube_files.append(i) output.vmd_network_creator(options.outputname, cube_files=cube_files) t.append(time.time()) # Final time good_bye_message(t) if 'mayavi' in options.otype: plt_data = [rho] datalabels = ['rho'] if options.drv is not None: plt_data.extend(delta_rho) datalabels.extend( ['d/d%s of %s' % (ii_d, 'rho') for ii_d in options.drv]) if options.laplacian: plt_data.append(laplacian_rho) datalabels.append('laplacian of rho') output.main_output(plt_data, qc.geo_info, qc.geo_spec, otype='mayavi', datalabels=datalabels) # Return the computed data, i.e., rho for standard, and (rho,delta_rho) # for derivative calculations. For laplacian (rho,delta_rho,laplacian_rho) return data
def calc_ao(qc, drv=None, otype=None, ofid=None): '''Computes and saves all atomic orbital or a derivative thereof. **Parameters:** qc.geo_spec, qc.geo_info, qc.ao_spec : See :ref:`Central Variables` for details. otype : str or list of str, optional Specifies output file type. See :data:`otypes` for details. ofid : str, optional Specifies output file name. If None, the filename will be based on :mod:`orbkit.options.outputname`. drv : int or string, {None, 'x', 'y', 'z', 'xx', 'xy', ...}, optional If not None, a derivative calculation of the atomic orbitals is requested. **Returns:** ao_list : numpy.ndarray, shape=((NAO,) + N) Contains the computed NAO atomic orbitals on a grid. Is only returned, if otype is None. ''' from omp_functions import run if ofid is None: ofid = options.outputname dstr = '' if drv is None else '_d%s' % drv ao_spec = [] lxlylz = [] datalabels = [] for sel_ao in range(len(qc.ao_spec)): if 'exp_list' in qc.ao_spec[sel_ao].keys(): l = qc.ao_spec[sel_ao]['exp_list'] else: l = core.exp[core.lquant[qc.ao_spec[sel_ao]['type']]] lxlylz.extend(l) for i in l: ao_spec.append(qc.ao_spec[sel_ao].copy()) ao_spec[-1]['exp_list'] = [i] datalabels.append('lxlylz=%s,atom=%d' %(i,ao_spec[-1]['atom'])) global_args = {'geo_spec':qc.geo_spec, 'geo_info':qc.geo_info, 'ao_spec':ao_spec, 'drv':drv, 'x':grid.x, 'y':grid.y, 'z':grid.z, 'is_vector':grid.is_vector, 'otype':otype, 'ofid':ofid} display('Starting the computation of the %d atomic orbitals'%len(ao_spec)+ (' using %d subprocesses.' % options.numproc if options.numproc > 1 else '.' ) ) ao = run(get_ao,x=numpy.arange(len(ao_spec)).reshape((-1,1)), numproc=options.numproc,display=display, initializer=initializer,global_args=global_args) if otype is None or 'h5' in otype or 'mayavi' in otype: ao_list = [] for i in ao: ao_list.extend(i) ao_list = numpy.array(ao_list) if otype is None or options.no_output: return ao_list if 'h5' in otype: import h5py fid = '%s_AO%s.h5' % (ofid,dstr) display('Saving to Hierarchical Data Format file (HDF5)...\n\t%s' % fid) output.hdf5_write(fid,mode='w',gname='general_info', x=grid.x,y=grid.y,z=grid.z, geo_info=qc.geo_info,geo_spec=qc.geo_spec, lxlylz=numpy.array(lxlylz,dtype=numpy.int64), aolabels=numpy.array(datalabels), grid_info=numpy.array(grid.is_vector,dtype=int)) for f in output.hdf5_open(fid,mode='a'): output.hdf5_append(ao_spec,f,name='ao_spec') output.hdf5_append(ao_list,f,name='ao_list') if 'mayavi' in otype: output.main_output(ao_list,qc.geo_info,qc.geo_spec, otype='mayavi',datalabels=datalabels) if 'vmd' in otype and options.vector is None: fid = '%s_AO%s' % (ofid,dstr) display('\nCreating VMD network file...' + '\n\t%(o)s.vmd' % {'o': fid}) output.vmd_network_creator(fid, cube_files=['%s_AO%s_%03d.cb' % (ofid, dstr,x) for x in range(len(ao_spec))])