def poisson(lam=1.0, size=None): '''Return dataset of given shape (or a single number) with samples taken from a Poisson distribution of parameter lam ''' if size is None: return _random.poisson(lam, [1]).getObject([0]) return _random.poisson(lam, _asiter(size))
def exponential(scale=1.0, size=None): '''Return dataset of given shape (or a single number) with samples taken from an exponential distribution of parameter scale ''' if size is None: return _random.exponential(scale, [1]).getObject([0]) return _random.exponential(scale, _asiter(size))
def randn(*shape): '''Return dataset of given shape (or a single number) with samples taken from a normal distribution of zero mean and unit variance ''' if len(shape) == 0: return _random.randn([1]).getObject([0]) return _random.randn(shape)
def rand(*shape): '''Return dataset of given shape (or a single number) with samples taken from a uniform distribution between 0 and 1 ''' if len(shape) == 0: return _random.rand([1]).getObject([0]) return _random.rand(shape)
def seed(seed=None): '''Set seed to given value (or a value based on the current time in milliseconds since the Epoch) ''' if seed is None: import time seed = int(time.time()*1000) _random.seed(seed)
def random_integers(low, high=None, size=None): '''Return dataset of given shape (or a single number) with samples taken from a discrete distribution of integers in the range [low, high] ''' if high is None: high = low low = 0 if size is None: return _random.random_integers(low, high, [1]).getObject([0]) return _random.random_integers(low, high, _asiter(size))