def median(self, axis=None): ''' Compute tha median along the specified axis. :param axis: (*int*) Axis along which the standard deviation is computed. The default is to compute the standard deviation of the flattened array. returns: (*array_like*) Median result ''' if axis is None: return ArrayMath.median(self._array) else: return NDArray(ArrayMath.median(self._array, axis))
def sum(self, axis=None): ''' Sum of array elements over a given axis. :param axis: (*int*) Axis along which the standard deviation is computed. The default is to compute the standard deviation of the flattened array. returns: (*array_like*) Sum result ''' if axis is None: return ArrayMath.sum(self._array) else: r = ArrayMath.sum(self._array, axis) return NDArray(r)
def cumsum(self, axis=None): ''' Return the cumulative sum of the elements along a given axis. :param axis: (*int*) Axis along which the standard deviation is computed. The default is to compute the standard deviation of the flattened array. returns: (*array_like*) Sum result ''' if axis is None: return ArrayMath.cumsum(self.flatten()._array, 0) else: r = ArrayMath.cumsum(self._array, axis) return NDArray(r)
def max(self, axis=None): ''' Get maximum value along an axis. :param axis: (*int*) Axis along which the maximum is computed. The default is to compute the maximum of the flattened array. :returns: Maximum values. ''' if axis is None: r = ArrayMath.max(self._array) return r else: r = ArrayMath.max(self._array, axis) return NDArray(r)
def argmax(self, axis=None): ''' Returns the indices of the minimum values along an axis. :param axis: (*int*) By default, the index is into the flattened array, otherwise along the specified axis. :returns: Array of indices into the array. It has the same shape as a.shape with the dimension along axis removed. ''' if axis is None: r = ArrayMath.argMax(self._array) return r else: r = ArrayMath.argMax(self._array, axis) return NDArray(r)
def contains_nan(self): ''' Check if the array contains nan value. :returns: (*boolean*) True if contains nan, otherwise return False. ''' return ArrayMath.containsNaN(self._array)
def std(self, axis=None): ''' Compute the standard deviation along the specified axis. :param x: (*array_like or list*) Input values. :param axis: (*int*) Axis along which the standard deviation is computed. The default is to compute the standard deviation of the flattened array. returns: (*array_like*) Standart deviation result. ''' if axis is None: r = ArrayMath.std(self._array) return r else: r = ArrayMath.std(self._array, axis) return NDArray(r)
def floor(self): ''' Return the floor of the input, element-wise. :return: The floor of each element. ''' return NDArray(ArrayMath.floor(self._array))
def ceil(self): ''' Return the ceiling of the input, element-wise. :return: The ceiling of each element. ''' return NDArray(ArrayMath.ceil(self._array))
def sign(self): ''' Returns an element-wise indication of the sign of a number. The sign function returns -1 if x < 0, 0 if x==0, 1 if x > 0. nan is returned for nan inputs. ''' return NDArray(ArrayMath.sign(self._array))
def prod(self): ''' Return the product of array elements. :returns: (*float*) Produce value. ''' return ArrayMath.prodDouble(self._array)
def var(self, axis=None, ddof=0): ''' Compute variance along the specified axis. :param axis: (*int*) Axis along which the variance is computed. The default is to compute the variance of the flattened array. :param ddof: (*int*) Delta Degrees of Freedom: the divisor used in the calculation is N - ddof, where N represents the number of elements. By default ddof is zero. returns: (*array_like*) Variance result. ''' if self.ndim == 1 or axis is None: r = ArrayMath.var(self._array, ddof) return r else: r = ArrayMath.var(self._array, axis, ddof) return NDArray(r)
def abs(self): ''' Calculate the absolute value element-wise. :returns: An array containing the absolute value of each element in x. For complex input, a + ib, the absolute value is \sqrt{ a^2 + b^2 }. ''' return NDArray(ArrayMath.abs(self._array))
def take(self, indices): ''' Take elements from an array along an axis. :param indices: (*array_like*) The indices of the values to extract. :returns: (*array*) The returned array has the same type as a. ''' ilist = [indices] r = ArrayMath.take(self._array, ilist) return NDArray(r)
def transpose(self): ''' Transpose 2-D array. :returns: Transposed array. ''' if self.ndim == 1: return self[:] dim1 = 0 dim2 = 1 r = ArrayMath.transpose(self.asarray(), dim1, dim2) return NDArray(r)
def dot(self, other): """ Matrix multiplication. :param other: (*2D or 1D Array*) Matrix or vector b. :returns: Result Matrix or vector. """ if isinstance(other, list): other = array(other) r = ArrayMath.dot(self._array, other._array) return NDArray(r)
def take(self, indices, axis=None): ''' Take elements from an array along an axis. :param indices: (*array_like*) The indices of the values to extract. :param axis: (*int*) The axis over which to select values. :returns: (*array*) The returned array has the same type as a. ''' if isinstance(indices, (list, tuple)): indices = NDArray(indices) r = ArrayMath.take(self._array, indices._array, axis) return NDArray(r)
def in_values(self, other): ''' Return the array with the value of 1 when the element value in the list other, otherwise set value as 0. :param other: (*list or array*) List value. :returns: (*array*) Result array. ''' if not isinstance(other, (list, tuple)): other = other.aslist() r = NDArray(ArrayMath.inValues(self._array, other)) return r
def linregress(x, y, outvdn=False): ''' Calculate a linear least-squares regression for two sets of measurements. :param x, y: (*array_like*) Two sets of measurements. Both arrays should have the same length. :param outvdn: (*boolean*) Output validate data number or not. Default is False. :returns: Result slope, intercept, relative coefficient, two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero, standard error of the estimated gradient, validate data number (remove NaN values). ''' if isinstance(x, list): x = np.array(x) if isinstance(y, list): y = np.array(y) r = ArrayMath.lineRegress(x.asarray(), y.asarray()) if outvdn: return r[0], r[1], r[2], r[3], r[4], r[5] else: return r[0], r[1], r[2], r[3], r[4]
def polyval(p, x): """ Evaluate a polynomial at specific values. If p is of length N, this function returns the value: p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1] If x is a sequence, then p(x) is returned for each element of x. If x is another polynomial then the composite polynomial p(x(t)) is returned. :param p: (*array_like*) 1D array of polynomial coefficients (including coefficients equal to zero) from highest degree to the constant term. :param x: (*array_like*) A number, an array of numbers, or an instance of poly1d, at which to evaluate p. :returns: Polynomial value """ if isinstance(x, list): x = NDArray(ArrayUtil.array(x)) return NDArray(ArrayMath.polyVal(p, x.asarray()))
def maskout(data, mask, x=None, y=None): """ Maskout data by polygons - NaN values of elements outside polygons. :param data: (*array_like*) Array data for maskout. :param mask: (*list*) Polygon list as maskout borders. :param x: (*array_like*) X coordinate array. :param y: (*array_like*) Y coordinate array. :returns: (*array_like*) Maskouted data array. """ if mask is None: return data elif isinstance(mask, (NDArray, DimArray)): r = ArrayMath.maskout(data.asarray(), mask.asarray()) if isinstance(data, DimArray): return DimArray(r, data.dims, data.fill_value, data.proj) else: return NDArray(r) if x is None or y is None: if isinstance(data, DimArray): x = data.dimvalue(data.ndim - 1) y = data.dimvalue(data.ndim - 2) else: return None if not isinstance(mask, (list, ArrayList)): mask = [mask] if data.ndim == 2 and x.ndim == 1 and y.ndim == 1: x, y = np.meshgrid(x, y) r = GeometryUtil.maskout(data._array, x._array, y._array, mask) if isinstance(data, DimArray): return DimArray(r, data.dims, data.fill_value, data.proj) else: return NDArray(r)
def __getitem__(self, indices): if self.variable.getDataType() in [DataType.STRUCTURE, DataType.SEQUENCE]: if isinstance(indices, str): #metadata return self.member_array(indices) else: a = self.dataset.read(self.name) return StructureArray(a.getArrayObject()) if indices is None: inds = [] for i in range(self.ndim): inds.append(slice(None)) indices = tuple(inds) if not isinstance(indices, tuple): inds = [] inds.append(indices) indices = inds if len(indices) < self.ndim: indices = list(indices) for i in range(self.ndim - len(indices)): indices.append(slice(None)) indices = tuple(indices) if len(indices) != self.ndim: print 'indices must be ' + str(self.ndim) + ' dimensions!' return None if not self.proj is None and not self.proj.isLonLat(): xlim = None ylim = None xidx = -1 yidx = -1 for i in range(0, self.ndim): dim = self.dims[i] if dim.getDimType() == DimensionType.X: k = indices[i] if isinstance(k, basestring): xlims = k.split(':') if len(xlims) == 1: xlim = [float(xlims[0])] else: xlim = [float(xlims[0]), float(xlims[1])] xidx = i elif dim.getDimType() == DimensionType.Y: k = indices[i] if isinstance(k, basestring): ylims = k.split(':') if len(ylims) == 1: ylim = [float(ylims[0])] else: ylim = [float(ylims[0]), float(ylims[1])] yidx = i if not xlim is None and not ylim is None: fromproj=KnownCoordinateSystems.geographic.world.WGS1984 inpt = PointD(xlim[0], ylim[0]) outpt1 = Reproject.reprojectPoint(inpt, fromproj, self.proj) if len(xlim) == 1: xlim = [outpt1.X] ylim = [outpt1.Y] else: inpt = PointD(xlim[1], ylim[1]) outpt2 = Reproject.reprojectPoint(inpt, fromproj, self.proj) xlim = [outpt1.X, outpt2.X] ylim = [outpt1.Y, outpt2.Y] indices1 = [] for i in range(0, self.ndim): if i == xidx: if len(xlim) == 1: indices1.append(str(xlim[0])) else: indices1.append(str(xlim[0]) + ':' + str(xlim[1])) elif i == yidx: if len(ylim) == 1: indices1.append(str(ylim[0])) else: indices1.append(str(ylim[0]) + ':' + str(ylim[1])) else: indices1.append(indices[i]) indices = indices1 origin = [] size = [] stride = [] ranges = [] dims = [] flips = [] onlyrange = True for i in range(0, self.ndim): isrange = True dimlen = self.dimlen(i) k = indices[i] if isinstance(k, int): if k < 0: k = self.dims[i].getLength() + k sidx = k eidx = k step = 1 elif isinstance(k, slice): if isinstance(k.start, basestring): sv = float(k.start) sidx = self.dims[i].getValueIndex(sv) elif isinstance(k.start, datetime.datetime): sv = miutil.date2num(k.start) sidx = self.dims[i].getValueIndex(sv) else: sidx = 0 if k.start is None else k.start if sidx < 0: sidx = self.dimlen(i) + sidx if isinstance(k.stop, basestring): ev = float(k.stop) eidx = self.dims[i].getValueIndex(ev) elif isinstance(k.stop, datetime.datetime): ev = miutil.date2num(k.stop) eidx = self.dims[i].getValueIndex(ev) else: eidx = self.dimlen(i) if k.stop is None else k.stop if eidx < 0: eidx = self.dimlen(i) + eidx eidx -= 1 if isinstance(k.step, basestring): nv = float(k.step) + self.dims[i].getDimValue()[0] nidx = self.dims[i].getValueIndex(nv) step = nidx - sidx elif isinstance(k.step, datetime.timedelta): nv = miutil.date2num(k.start + k.step) nidx = self.dims[i].getValueIndex(nv) step = nidx - sidx else: step = 1 if k.step is None else k.step if sidx > eidx: iidx = eidx eidx = sidx sidx = iidx elif isinstance(k, list): onlyrange = False isrange = False if not isinstance(k[0], datetime.datetime): ranges.append(k) else: tlist = [] for tt in k: sv = miutil.date2num(tt) idx = self.dims[i].getValueIndex(sv) tlist.append(idx) ranges.append(tlist) k = tlist elif isinstance(k, basestring): dim = self.variable.getDimension(i) kvalues = k.split(':') sv = float(kvalues[0]) sidx = dim.getValueIndex(sv) if len(kvalues) == 1: eidx = sidx step = 1 else: ev = float(kvalues[1]) eidx = dim.getValueIndex(ev) if len(kvalues) == 2: step = 1 else: step = int(float(kvalues[2]) / dim.getDeltaValue()) if sidx > eidx: iidx = eidx eidx = sidx sidx = iidx else: print k return None if isrange: if eidx >= dimlen: print 'Index out of range!' return None origin.append(sidx) n = eidx - sidx + 1 size.append(n) if n > 1: dim = self.variable.getDimension(i) if dim.isReverse(): step = -step dim = dim.extract(sidx, eidx, step) dim.setReverse(False) dims.append(dim) stride.append(step) if step < 0: step = abs(step) flips.append(i) rr = Range(sidx, eidx, step) ranges.append(rr) else: if len(k) > 1: dim = self.variable.getDimension(i) dim = dim.extract(k) dim.setReverse(False) dims.append(dim) #rr = self.dataset.read(self.name, origin, size, stride).reduce() if onlyrange: rr = self.dataset.dataset.read(self.name, ranges) else: rr = self.dataset.dataset.take(self.name, ranges) if rr.getSize() == 1: iter = rr.getIndexIterator() return iter.getObjectNext() else: for i in flips: rr = rr.flip(i) rr = rr.reduce() ArrayMath.missingToNaN(rr, self.fill_value) if len(flips) > 0: rrr = Array.factory(rr.getDataType(), rr.getShape()) MAMath.copy(rrr, rr) array = np.array(rrr) else: array = np.array(rr) data = np.DimArray(array, dims, self.fill_value, self.dataset.proj) return data
def join(self, b, dimidx): r = ArrayMath.join(self._array, b._array, dimidx) return NDArray(r)
def __getitem__(self, indices): if not isinstance(indices, tuple): inds = [] inds.append(indices) indices = inds if len(indices) < self.ndim: if isinstance(indices, tuple): indices = list(indices) for i in range(self.ndim - len(indices)): indices.append(slice(None)) allint = True aindex = self._array.getIndex() i = 0 for ii in indices: if isinstance(ii, int): if ii < 0: ii = self.shape[i] + ii aindex.setDim(i, ii) else: allint = False break i += 1 if allint: return self._array.getObject(aindex) if self.ndim == 0: return self newaxisn = 0 newaxis = False if len(indices) > self.ndim: newaxisn = len(indices) - self.ndim newaxis = True for i in range(newaxisn): if not indices[-i - 1] is None: newaxis = False if newaxis: indices = list(indices) indices = indices[:-newaxisn] if len(indices) != self.ndim: print 'indices must be ' + str(self.ndim) + ' dimensions!' raise IndexError() ranges = [] flips = [] onlyrange = True alllist = True isempty = False nshape = [] for i in range(0, self.ndim): k = indices[i] if isinstance(k, int): if k < 0: k = self._shape[i] + k sidx = k eidx = k step = 1 alllist = False elif isinstance(k, slice): sidx = 0 if k.start is None else k.start if sidx < 0: sidx = self._shape[i] + sidx eidx = self._shape[i] if k.stop is None else k.stop if eidx < 0: eidx = self._shape[i] + eidx eidx -= 1 step = 1 if k.step is None else k.step alllist = False elif isinstance(k, (list, tuple, NDArray)): if isinstance(k, NDArray): k = k.aslist() if isinstance(k[0], bool): kk = [] for i in range(len(k)): if k[i]: kk.append(i) k = kk onlyrange = False ranges.append(k) continue else: print k return None if step < 0: step = abs(step) flips.append(i) if eidx < sidx: tempidx = sidx sidx = eidx + 2 eidx = tempidx if sidx >= self.shape[i]: isempty = True if eidx < sidx: isempty = True else: rr = Range(sidx, eidx, step) ranges.append(rr) nshape.append(eidx - sidx + 1 if eidx - sidx >= 0 else 0) if isempty: r = ArrayUtil.empty([0], self.dtype._dtype) return NDArray(r) if onlyrange: r = ArrayMath.section(self._array, ranges) else: if alllist: r = ArrayMath.takeValues(self._array, ranges) else: r = ArrayMath.take(self._array, ranges) if newaxis: for i in flips: r = r.flip(i) rr = Array.factory(r.getDataType(), r.getShape()) MAMath.copy(rr, r) rr = NDArray(rr) newshape = list(rr.shape) for i in range(newaxisn): newshape.append(1) return rr.reshape(newshape) if r.getSize() == 1: iter = r.getIndexIterator() r = iter.getObjectNext() if isinstance(r, Complex): return complex(r.getReal(), r.getImaginary()) else: return r else: for i in flips: r = r.flip(i) r = NDArray(r) if onlyrange: r.base = self.get_base() return r
def tolist(self): ''' Convert to a list ''' r = ArrayMath.asList(self._array) return list(r)
def aslist(self): r = ArrayMath.asList(self._array) return list(r)
def log10(self): return NDArray(ArrayMath.log10(self._array))
def exp(self): return NDArray(ArrayMath.exp(self._array))
def atan(self): return NDArray(ArrayMath.atan(self._array))
def acos(self): return NDArray(ArrayMath.acos(self._array))