# Description: setting number of retained components and variance covered, using generalized eigenvectors # Category: projection # Uses: iris # Referenced: orngPCA.htm # Classes: orngPCA.PCA import orange, orngPCA data = orange.ExampleTable("iris.tab") attributes = ['sepal length', 'sepal width', 'petal length', 'petal width'] pca = orngPCA.PCA(data, standardize=True, attributes=attributes, maxNumberOfComponents=-1, varianceCovered=1.0) print "Retain all vectors and full variance:" print pca pca = orngPCA.PCA(data, standardize=True, maxNumberOfComponents=-1, varianceCovered=1.0, useGeneralizedVectors=1) print "As above, only with generalized vectors:" print pca
# Description: projecting data with trained PCA # Category: projection # Uses: iris # Referenced: orngPCA.htm # Classes: orngPCA.PCA import orange, orngPCA data = orange.ExampleTable("iris.tab") attributes = ['sepal length', 'sepal width', 'petal length', 'petal width'] pca = orngPCA.PCA(data, attributes=attributes, standardize=True) projected = pca(data) print "Projection on first two components:" for d in projected[:5]: print d
# Description: PCA with attribute and row selection # Category: projection # Uses: iris # Referenced: orngPCA.htm # Classes: orngPCA.PCA import orange, orngPCA data = orange.ExampleTable("iris.tab") pca = orngPCA.PCA(data, standardize=True) print "PCA on all data:" print pca attributes = ['sepal length', 'sepal width', 'petal length', 'petal width'] pca = orngPCA.PCA(data, standardize=True, attributes=attributes) print "PCA on attributes sepal.length, sepal.width, petal.length, petal.width:" print pca rows = [1, 0] * (len(data) / 2) pca = orngPCA.PCA(data, standardize=True, rows=rows) print "PCA on every second row:" print pca
# Description: using your own imputer and continuizer in PCA # Category: projection # Uses: adult_sample # Referenced: orngPCA.htm # Classes: orngPCA.PCA import orange, orngPCA data = orange.ExampleTable("bridges.tab") imputer = orange.ImputerConstructor_maximal continuizer = orange.DomainContinuizer() continuizer.multinomialTreatment = continuizer.AsNormalizedOrdinal continuizer.classTreatment = continuizer.Ignore continuizer.continuousTreatment = continuizer.Leave pca = orngPCA.PCA(data, standardize=True, imputer=imputer, continuizer=continuizer) print pca