fname = f"/scratch/r/rbond/msyriac/data/scratch/tilec/test_sim_galtest_nofg_{version}_00_00{seed}_deep56/scovs_{i}_{j}.npy" scov = enmap.enmap(np.load(fname),modlmap.wcs) fname = f"/scratch/r/rbond/msyriac/data/scratch/tilec/test_sim_galtest_nofg_{version}_00_00{seed}_deep56/unsmoothed_noise_cov_{i}_{j}.npy" try: ncov = enmap.enmap(np.load(fname),modlmap.wcs) except: ncov = 0 ccov = scov + ncov else: fname = f"/scratch/r/rbond/msyriac/data/scratch/tilec/test_sim_galtest_nofg_{version}_00_00{seed}_deep56/coadd_cov_{i}_{j}.npy" ccov = enmap.enmap(np.load(fname),modlmap.wcs) usig[...,i,j] = usig[...,j,i] = ccov.copy() print(i,j) print("eigs...") emap = modlmap*0 # v = np.linalg.eigh(usig[modlmap<6000,...][500,...])[0] # print(v) # print(v.shape) emap[modlmap<6000] = np.linalg.eigh(usig[modlmap<6000,...])[0][...,0] #emap = np.linalg.eigh(usig)[0][:,:,0] np.save("emap_tot",emap) else: emap = np.load("emap_tot.npy") emap[emap<-1e-10] = np.nan io.power_crop(np.fft.fftshift(emap),300,"eigmapdet.png",ftrans=False,lim=[-0.01,0.01])
return p, cents, p1d seeds = [12, 13] narrays = len(qids) for comp in ['cmb']: pl1 = io.Plotter('Cell', xyscale='loglin', ylabel='$W$') pl2 = io.Plotter('Cell') for seed in seeds: mname = f"/scratch/r/rbond/msyriac/data/depot/tilec/map_joint_{version}_00_00{seed}_deep56/tilec_single_tile_deep56_cmb_map_joint_{version}_00_00{seed}.fits" p2d, cents, p1d = pow(enmap.read_map(mname)) io.power_crop(p2d, 150, f"det2d{seed}comp.png", lim=[-10, 1]) #io.plot_img(np.log10(p2d),f"det2d{seed}comp.png",lim=[-10,1],aspect='auto') #continue # !!! for i in range(narrays): qid = qids[i] #if qid!='p08': continue fname = f"/scratch/r/rbond/msyriac/data/depot/tilec/map_joint_{version}_00_00{seed}_deep56/tilec_single_tile_deep56_cmb_map_joint_{version}_00_00{seed}_{qid}_weight.fits" w2d = enmap.read_map(fname) cents, w1d = binner.bin(w2d) pl1.add(cents, w1d, ls={12: '-', 13: '--'}[seed], color=f'C{i}') io.power_crop(np.fft.fftshift(w2d), 150,
lmap = mask.lmap() lymap,lxmap = lmap # def model(x,width,amplitude,sigma): # mmap = 1-amplitude * np.exp(-lymap**2./2./sigma**2.) # mmap[lxmap>width/2.] = 1 # mmap[lxmap<-width/2.] = 1 # return mmap def model(x,width,amplitude,sigma): mmap = (1-amplitude * np.exp(-lymap**2./2./sigma**2.))* (1-np.exp(-lxmap**2./2./width**2.)) return mmap m = model(0,100,1,3000) io.power_crop(np.fft.fftshift(m),Ncrop,'model.png',ftrans=False) # sys.exit() # io.hplot(enmap.downgrade(isim,4),'isim') # io.hplot(enmap.downgrade(tmap,4),'tmap') kisim1 = ffunc(isim1[0]) kisim2 = ffunc(isim2[0]) ktmap1 = ffunc(tmap1[0]) ktmap2 = ffunc(tmap2[0]) pcross2d1 = pfunc(kisim1,ktmap1) pcross2d2 = pfunc(kisim2,ktmap2) psim2d1 = pfunc(kisim1,kisim1) psim2d2 = pfunc(kisim2,kisim2)
from __future__ import print_function from orphics import maps,io,cosmology,stats from pixell import enmap import numpy as np import os,sys from tilec import covtools from tilec.ilc import CTheory qid = 'p01' scov = enmap.read_map("/scratch/r/rbond/msyriac/dump/unsmoothed_debeamed_%s_%s.fits" % (qid,qid)) dncov = enmap.read_map("/scratch/r/rbond/msyriac/dump/smoothed_noise_%s_%s.fits" % (qid,qid)) beamsq = enmap.read_map("/scratch/r/rbond/msyriac/dump/beamsq_%s_%s.fits" % (qid,qid)) io.power_crop(scov,200,"inv_scov.png") io.power_crop(dncov,200,"inv_dncov.png") io.power_crop(beamsq,200,"inv_beamsq.png") bin_edges = np.arange(80,3000,20) modlmap = scov.modlmap() binner = stats.bin2D(modlmap,bin_edges) # fwhm = 33. # lefts = bin_edges[:-1] # rights = bin_edges[1:] # cents = binner.centers # ms = maps.gauss_beam(rights,fwhm)/maps.gauss_beam(lefts,fwhm) # pl = io.Plotter(xyscale='linlin',xlabel='l',ylabel='Bright/Bleft') # pl.add(cents,ms) # pl.done("inv_brat.png") # sys.exit()
# print(ksol[px[0]-11,px[1]]) # print(optile[px[0],px[1]]) # print(optile[px[0]-1,px[1]]) # print(modlmap[px[0],px[1]]) # print(modlmap[px[0]-1,px[1]]) # # pftile = ptile # # pftile[modlmap>300] = 0 # # print(np.sort(pftile[pftile>0])) # # print(modlmap[np.isclose(ptile,1.52256073e+02)]) # # io.plot_img(np.log10(np.fft.fftshift(ptile)),os.environ['WORK']+"/tiling/ptile_%d_smap" % i) # # io.hplot(enmap.enmap(np.log10(np.fft.fftshift(ptile)),ewcs),os.environ['WORK']+"/tiling/phtile_%d_smap" % i) smap = enmap.ifft(kbeam * enmap.enmap(ksol, ewcs), normalize='phys').real if solution == 'CMB': io.hplot(smap, os.environ['WORK'] + "/tiling/tile_%d_smap" % i) io.power_crop(np.real(ksol * ksol.conj()), 100, os.environ['WORK'] + "/tiling/ptile_%d.png" % i) # sys.exit() ta.update_output(solution, smap, inserter) #ta.update_output("processed",c*civar,inserter) #ta.update_output("processed_ivar",civar,inserter) #pmap = ilc.do_ilc #ta.update_output("processed",pmap,inserter) print("Rank %d done" % comm.rank) for solution in solutions: pmap = ta.get_final_output(solution) if comm.rank == 0: io.hplot(pmap, os.environ['WORK'] + "/tiling/map_%s" % solution) mask = sints.get_act_mr3_crosslinked_mask("deep56") io.hplot( enmap.extract(pmap, mask.shape, mask.wcs) * mask, os.environ['WORK'] + "/tiling/mmap_%s" % solution)
version = "noLFI_nohigh_test" mask = sints.get_act_mr3_crosslinked_mask(region) modlmap = mask.modlmap() lmap = mask.lmap() bin_edges = np.arange(20, 6000, 80) binner = stats.bin2D(modlmap, bin_edges) def pow(x, y=None): k = enmap.fft(x, normalize='phys') ky = enmap.fft(y, normalize='phys') if y is not None else k p = (k * ky.conj()).real cents, p1d = binner.bin(p) return p, cents, p1d seeds = [12] #,13] qids = "d56_04,d56_05,d56_06,p04,p05,p06".split(',') narrays = len(qids) for comp in ['cmb']: for i in range(narrays): qid = qids[i] for seed in seeds: fname = f"/scratch/r/rbond/msyriac/data/scratch/tilec/test_sim_galtest_nofg_{version}_00_00{seed}_deep56/dncovs_{i}_{i}.npy" scov = enmap.enmap(np.load(fname), modlmap.wcs) io.power_crop(scov, 600, f"dn2d_det_{qid}_{seed}.png")
# seeds = [12] versions = ['test_sim_galtest_final'] seeds = [12,13] for version in versions: pl = io.Plotter(xyscale='linlog',scalefn = lambda x: x**2./2./np.pi,xlabel='l',ylabel='D') for seed in seeds: csfile = tutils.get_generic_fname(tdir,region,'cmb',deproject=None,data_comb=dcomb,version=version,sim_index=seed) imap = enmap.read_map(csfile) modlmap = imap.modlmap() k = enmap.fft(imap,normalize='phys') p2d = p(k) io.power_crop(p2d,300,f"cp2d_{version}.png") binner = stats.bin2D(modlmap,bin_edges) cents,p1d = binner.bin(p2d) pl.add(cents,p1d,lw=1,alpha=0.8,label=f'{seed}') pl._ax.set_ylim(10,3e5) pl.done("cpowall_%s.png" % version) # #This snippet discovered that sim_index=12 is the first instance of break-down # nsims = 13 # p = lambda x: (x*x.conj()).real # bin_edges = np.arange(20,6000,20) # pl = io.Plotter(xyscale='linlog',scalefn = lambda x: x**2./2./np.pi,xlabel='l',ylabel='D')
#omap = enmap.read_map('/scratch/r/rbond/msyriac/data/tilec/omar/dataCoadd_combined_I_s14&15_deep56.fits') omap = enmap.read_map( '/scratch/r/rbond/msyriac/data/tilec/omar/preparedMap_T_s14&15_deep56.fits' ) * 2.726e6 omar_mask = enmap.read_map( '/scratch/r/rbond/msyriac/data/tilec/omar/mask_s14&15_deep56.fits') omar_w2 = np.mean(omar_mask**2.) # io.hplot(enmap.downgrade(omap,4),"omap") # io.hplot(enmap.downgrade(omask,4),"omask") # sys.exit() okmap = enmap.fft(omap, normalize='phys') op2d = np.real(okmap * okmap.conj()) io.power_crop(p2d, 200, "pimg_%s_%s.png" % (args.solution, args.region), lim=lim) io.power_crop(nmap, 200, "nimg_%s_%s.png" % (args.solution, args.region), lim=lim) sel = np.logical_and(modlmap > lmin, modlmap < lmax) xs = modlmap[sel].reshape(-1) ys = p2d[sel].reshape(-1) pl = io.Plotter(xyscale='linlog', xlabel='l', ylabel='C') pl._ax.scatter(xs, ys) #pl._ax.set_ylim(lim[0],lim[1]) pl.done("pscatter_%s_%s.png" % (args.solution, args.region))
""" # ti_noise2d = enmap.read_map("%stilec_single_tile_%s_cmb_map_v1.0.0_rc_joint_noise.fits" % (tpath,region)) # ti_nosz_noise2d = enmap.read_map("%stilec_single_tile_%s_cmb_deprojects_comptony_map_v1.0.0_rc_joint_noise.fits" % (tpath,region)) # ti_cross_noise2d = enmap.read_map("%stilec_single_tile_%s_cmb_deprojects_comptony_map_v1.0.0_rc_joint_cross_noise.fits" % (tpath,region)) ti_map = enmap.read_map("%stilec_single_tile_%s_cmb_map_v1.0.0_rc_joint.fits" % (tpath, region)) ti_nosz_map = enmap.read_map( "%stilec_single_tile_%s_cmb_deprojects_comptony_map_v1.0.0_rc_joint.fits" % (tpath, region)) ti_noise2d = pow2(ti_map, ti_map, tkbeam, tkbeam) ti_nosz_noise2d = pow2(ti_nosz_map, ti_nosz_map, tkbeam_nosz, tkbeam_nosz) ti_cross_noise2d = pow2(ti_map, ti_nosz_map, tkbeam, tkbeam_nosz) io.power_crop(ti_noise2d, Nplot, "ti_noise2d.png", ftrans=True) io.power_crop(ti_nosz_noise2d, Nplot, "ti_nosz_noise2d.png", ftrans=True) io.power_crop(ti_cross_noise2d, Nplot, "ti_cross_noise2d.png", ftrans=True) tmap = enmap.read_map("%sdataCoadd_combined_I_s14&15_%s.fits" % (opath, region)) oi_noise2d = pow(tmap) io.power_crop(oi_noise2d, Nplot, "oi_noise2d.png", ftrans=True) cents, ti_noise1d = binner.bin(ti_noise2d) cents, ti_nosz_noise1d = binner.bin(ti_nosz_noise2d) cents, ti_cross_noise1d = binner.bin(ti_cross_noise2d) cents, oi_noise1d = binner.bin(oi_noise2d) pl = io.Plotter(xlabel='l', ylabel='C', xyscale='linlog')
p2d, cents, p1d = pow(imap) lp2d = np.log10(p2d) sel = np.logical_and(modlmap < 1300, modlmap > 1100) vals = lp2d[sel] # print(vals) # print(vals.mean(),vals.max(),vals.min(),vals.std()) hist, edges = np.histogram(vals, bins=np.linspace(-15, 5, 300)) hcents = (edges[1:] + edges[:-1]) / 2. pl2 = io.Plotter(xlabel='v', ylabel='N') pl2.add(hcents, hist) pl2.done(f"detvalhist{seed}.png") pl.add(cents, p1d, label=f"{seed}") llim = 0 io.power_crop(p2d, 150, f"det2d{seed}comp.png", lim=[-10, 1]) badinds = np.argwhere(np.logical_and(np.log10(p2d) > llim, modlmap > 1000)) print(modlmap[np.logical_and(np.log10(p2d) > llim, modlmap > 1000)]) #sys.exit() badinds = np.argwhere(np.logical_and(np.log10(p2d) > llim, modlmap > 1000)) if len(badinds) > 0: ind = 0 print(badinds[ind]) print(modlmap[badinds[ind][0], badinds[ind][1]]) print(modlmap[badinds[ind][0] + 10, badinds[ind][1] + 10]) print(p2d[badinds[ind][0], badinds[ind][1]]) print(p2d[badinds[ind][0] + 10, badinds[ind][1] + 10]) p2d[np.logical_and(np.log10(p2d) > llim, modlmap > 1000)] = np.nan #p2d[sel] = np.nan io.power_crop(p2d, 150, f"mdet2d{seed}comp.png", lim=[-10, 1])