Esempio n. 1
0
    def __init__(self, model_path: os.PathLike, leaf_template: str, inner_template: str, leaf_border: str, verbose: int) -> None:
        """
        Initialize templates for the subroutines generation also the threshold for the leaf function size.
        Additionally, instantiate basic internal resources (id generator and subroutines collector). 

        Use the DFS subroutines naming.
        """
        assert os.path.isfile(model_path) and model_path.endswith(
            '.java'), 'Fatal Error Splitter: invalid path to the DT java file.'
        self.model_path = model_path
        self.leaf_template = leaf_template
        self.inner_template = inner_template
        self.leaf_border = leaf_border
        self.verbose = verbose

        def get_id(verbose: int) -> int:
            """
            Return unique id.
            """
            id = 0
            while True:
                if verbose == 1:
                    print('Setting up subroutine {}..'.format(id))
                yield id
                id += 1
        self.get_id = get_id(self.verbose)
        self.subroutines = []

        self.suffix = '\n'
Esempio n. 2
0
def save_wav(y: array, sr: int, file: os.PathLike) -> None:
    """Save audio file to disk.
    This function saves audio to disk using scipy.io.wavfile, with additional step
    to convert input waveform to int16 unless it already is int16.

    Parameters:
        y(array): the audio data.
        sr(int|None): the sample rate of the audio data. If sr does not match the actual audio data,
        the resulting file will encounter play-back problems.
    Notes:
        The function only supports raw wav format.
    """
    if y.ndim == 2 and y.shape[0] > y.shape[1]:
        warnings.warn(
            f'The audio array tried to saved has {y.shape[0]} channels ' +
            f'and the wave length is {y.shape[1]}. It\'s that what you mean?' +
            f'If not, try to tranpose the array before saving.')
    if not file.endswith('.wav'):
        raise ParameterError(
            f'only .wav file supported, but dst file name is: {file}')

    if sr <= 0:
        raise ParameterError(
            f'Sample rate should be larger than 0, recieved sr = {sr}')

    if y.dtype not in ['int16', 'int8']:
        warnings.warn(
            f'input data type is {y.dtype}, will convert data to int16 format before saving'
        )
        y_out = depth_convert(y, 'int16')
    else:
        y_out = y

    wavfile.write(file, sr, y_out.T)
Esempio n. 3
0
def load_data(path: os.PathLike):
    """
    Loading data from NumPy array format (.npy) or from MATLAB format (.mat)
    :param path: Path to either .npy or .mat type file
    :return: numpy array with loaded data
    """
    if path.endswith(".npy"):
        data = np.load(path)
    elif path.endswith(".mat"):
        mat = loadmat(path)
        for key in mat.keys():
            if "__" not in key:
                data = mat[key]
                break
    else:
        raise ValueError("This file type is not supported")
    return data
Esempio n. 4
0
def plot_pitch_class_histogram(x: np.array,
                               dest_path: os.PathLike,
                               by_instrument: bool = True):
    """Plot a histogram of pitches"""
    if dest_path.endswith(".pgf"):
        matplotlib.use("pgf")
    xp = np.where(np.isin(x, [REST, SUSTAIN]), np.nan, x)
    df = pd.DataFrame(xp, columns=TRACKS)
    ax = sns.histplot(data=df)
    ax.set_xlabel("MIDI pitch value")
    os.makedirs(os.path.dirname(dest_path), exist_ok=True)
    plt.savefig(dest_path)
    return ax
Esempio n. 5
0
def plot_learning_curves(history_file: os.PathLike, dest_path: os.PathLike):
    """Plot the train vs. validation learning curves from a history file."""
    if dest_path.endswith(".pgf"):
        matplotlib.use("pgf")
    df = pd.read_csv(history_file)
    fig, ax = plt.subplots()
    y = df.loss
    y_val = df.val_loss
    label = "Loss"
    ax.plot(df.epoch, y, label=f"Training {label}")
    ax.plot(df.epoch, y_val, label=f"Validation {label}")
    ax.set_xlabel("Training Epochs")
    ax.set_ylabel(f"{label} Score")
    ax.set_ylim(0.0)
    ax.legend(loc="best")
    fig.tight_layout()
    os.makedirs(os.path.dirname(dest_path), exist_ok=True)
    plt.savefig(dest_path, )

    return (fig, ax)
Esempio n. 6
0
def run_unix_split(fn: os.PathLike,
                   n_reads: int,
                   read_number: int,
                   output_prefix: os.PathLike = '',
                   gzip: bool = False,
                   compression_level: int = 5):

    statement = []
    if fn.endswith(".gz"):
        cmd = f"""zcat {fn} | split -l {n_reads * 4} -d --additional-suffix=_{read_number}.fastq - {output_prefix}_part;"""
    else:
        cmd = f"cat {fn} | split -l {n_reads * 4} -d  --additional-suffix=_{read_number}.fastq - {output_prefix}_part;"

    statement.append(cmd)

    if gzip:
        statement.append(
            f"ls {output_prefix}_part* | xargs -P 8 -n 1 gzip -{compression_level}"
        )

    subprocess.run(' '.join(statement), shell=True)
Esempio n. 7
0
    def _save_to_npz(file_path: os.PathLike, features: np.ndarray,
                     feature_name: str) -> None:

        makedirs_safe(os.path.dirname(file_path))
        if not file_path.endswith(".npz"):
            file_path += ".npz"
        file_path_backup = file_path + "_bak"

        clean_backup_file = False

        if os.path.isfile(file_path):
            saved_features = dict(np.load(file_path))

            os.rename(file_path, file_path_backup)
            clean_backup_file = True

            if feature_name in saved_features:
                logging.info("Overriding {} in {}.".format(
                    feature_name, file_path))
            saved_features[feature_name] = features
        else:
            saved_features = {feature_name: features}

        try:
            np.savez(file_path, **saved_features)
        except:
            if os.path.isfile(file_path_backup):
                logging.error("Error when writing {}, restoring backup".format(
                    file_path))
                if os.path.isfile(file_path):
                    os.remove(file_path)
                os.rename(file_path_backup, file_path)
                clean_backup_file = False
            else:
                logging.error("Error when writing {}.".format(file_path))
            raise

        if clean_backup_file:
            os.remove(file_path_backup)
Esempio n. 8
0
def locker(
    file: os.PathLike,
    password: bytes,
    encrypting: typing.Optional[bool] = None,
    remove: bool = True,
    *,
    ext: typing.Optional[str] = None,
    newfile: typing.Optional[str] = None,
    **kwargs,
) -> None:
    """Encrypts or decrypts files with AES algorithm.

    See also:
        :func:`lockerf` function for more details.

    Args:
        file (str):
            The actual location of the file.
        password (bytes, bytearray, memoryview):
            Password to use to encrypt/decrypt the file. See :func:`lockerf`.
        encrypting (bool):
            Whether the file is being locked (encrypted) or not.

            If ``encrypting`` is True, the file is encrypted no matter what
            the extension is.
            If ``encrypting`` is False, the file is decrypted no matter what
            the extension is.

            If ``encrypting`` is None (the default), it is guessed from the
            file extension and the file header instead.

            If encrypting is provided, argument ``ext`` is ignored.
        remove (bool):
            Whether to remove the file after encryption/decryption. Default
            is True.

    Keyword Arguments:
        ext (str):
            The extension to be used for the encrypted file. If None,
            the default value ``.pyflk`` is used.
        newfile (str):
            The name of the file to be written upon. It must not be
            already present. If None is provided (default), the name
            of the ``file`` plus the extension is used.
        **kwargs:
            All other kwargs are passed to ``lockerf`` function.

    Important:
        The removal of file is **NOT** secure, because it uses
        :py:func:`os.remove` to remove the file. With enough expertise and
        time, the original file can be restored. If you want to remove the
        original file securely, consider using ``shred`` or ``srm`` or some
        other secure file deletion tools.
    """
    if newfile and ext:
        raise ValueError("newfile and ext are mutually exclusive")

    ext = ext or EXTENSION

    # guess encrypting if not provided
    if encrypting is None:
        encrypting = not file.endswith(ext)

    # make newfile name if not provided
    if newfile is None:
        if encrypting:
            newfile = file + ext
        else:
            newfile = os.path.splitext(file)[0]

    try:
        with open(file, "rb") as infile, open(newfile, "xb") as outfile:
            lockerf(infile, outfile, password, encrypting, **kwargs)
    except (TypeError, exc.DecryptionError):
        # remove invalid file
        os.remove(newfile)
        raise
    else:
        # remove the original file
        if remove:
            os.remove(file)