import numpy as np
import ostracism

if __name__ == "__main__":
    # mu, sigma case analysis
    mu = np.float64(sys.argv[1])
    s = np.float64(sys.argv[2])

    # N case analysis
    #s = np.float64(sys.argv[1])
    #N = int(sys.argv[2])

    #case = sys.argv[3]

    model = ostracism.SocialLearningSim(N=5,
                                        M=100,
                                        c=1.,
                                        r=3.,
                                        G=.7,
                                        B=.7,
                                        gamma=.7,
                                        beta=.7,
                                        sigma=1.,
                                        omega=0,
                                        mu=mu,
                                        s=s,
                                        compulsory=False,
                                        SOP=False,
                                        case="competition")
    model.runAnalyticalSim()
Esempio n. 2
0
import sys
import numpy as np
import ostracism

if __name__ == "__main__":
    # mu, sigma case analysis
    mu = np.float64(sys.argv[1])
    s = np.float64(sys.argv[2])

    # N case analysis
    #s = np.float64(sys.argv[1])
    #N = int(sys.argv[2])

    #case = sys.argv[3]

    model = ostracism.SocialLearningSim(N = 5, M = 100, c = 1., r = 3., G = .7, B = .7, gamma = .7, beta = .7, sigma = 1., omega = 0, mu = mu, s = s, compulsory = True, SOP=True, case="pool")
    model.runAnalyticalSim()