import numpy as np import ostracism if __name__ == "__main__": # mu, sigma case analysis mu = np.float64(sys.argv[1]) s = np.float64(sys.argv[2]) # N case analysis #s = np.float64(sys.argv[1]) #N = int(sys.argv[2]) #case = sys.argv[3] model = ostracism.SocialLearningSim(N=5, M=100, c=1., r=3., G=.7, B=.7, gamma=.7, beta=.7, sigma=1., omega=0, mu=mu, s=s, compulsory=False, SOP=False, case="competition") model.runAnalyticalSim()
import sys import numpy as np import ostracism if __name__ == "__main__": # mu, sigma case analysis mu = np.float64(sys.argv[1]) s = np.float64(sys.argv[2]) # N case analysis #s = np.float64(sys.argv[1]) #N = int(sys.argv[2]) #case = sys.argv[3] model = ostracism.SocialLearningSim(N = 5, M = 100, c = 1., r = 3., G = .7, B = .7, gamma = .7, beta = .7, sigma = 1., omega = 0, mu = mu, s = s, compulsory = True, SOP=True, case="pool") model.runAnalyticalSim()