Esempio n. 1
0
def test_linear_mapping():

    ns = 150
    nt = 200

    Xs, ys = get_data_classif('3gauss', ns)
    Xt, yt = get_data_classif('3gauss2', nt)

    A, b = ot.da.OT_mapping_linear(Xs, Xt)

    Xst = Xs.dot(A) + b

    Ct = np.cov(Xt.T)
    Cst = np.cov(Xst.T)

    np.testing.assert_allclose(Ct, Cst, rtol=1e-2, atol=1e-2)
Esempio n. 2
0
def test_linear_mapping():

    ns = 150
    nt = 200

    Xs, ys = get_data_classif('3gauss', ns)
    Xt, yt = get_data_classif('3gauss2', nt)

    A, b = ot.da.OT_mapping_linear(Xs, Xt)

    Xst = Xs.dot(A) + b

    Ct = np.cov(Xt.T)
    Cst = np.cov(Xst.T)

    np.testing.assert_allclose(Ct, Cst, rtol=1e-2, atol=1e-2)
Esempio n. 3
0
def test_linear_mapping_class():

    ns = 150
    nt = 200

    Xs, ys = get_data_classif('3gauss', ns)
    Xt, yt = get_data_classif('3gauss2', nt)

    otmap = ot.da.LinearTransport()

    otmap.fit(Xs=Xs, Xt=Xt)
    assert hasattr(otmap, "A_")
    assert hasattr(otmap, "B_")
    assert hasattr(otmap, "A1_")
    assert hasattr(otmap, "B1_")

    Xst = otmap.transform(Xs=Xs)

    Ct = np.cov(Xt.T)
    Cst = np.cov(Xst.T)

    np.testing.assert_allclose(Ct, Cst, rtol=1e-2, atol=1e-2)
Esempio n. 4
0
def test_linear_mapping_class():

    ns = 150
    nt = 200

    Xs, ys = get_data_classif('3gauss', ns)
    Xt, yt = get_data_classif('3gauss2', nt)

    otmap = ot.da.LinearTransport()

    otmap.fit(Xs=Xs, Xt=Xt)
    assert hasattr(otmap, "A_")
    assert hasattr(otmap, "B_")
    assert hasattr(otmap, "A1_")
    assert hasattr(otmap, "B1_")

    Xst = otmap.transform(Xs=Xs)

    Ct = np.cov(Xt.T)
    Cst = np.cov(Xst.T)

    np.testing.assert_allclose(Ct, Cst, rtol=1e-2, atol=1e-2)
Esempio n. 5
0
def test_sinkhorn_l1l2_transport_class():
    """test_sinkhorn_transport
    """

    ns = 150
    nt = 200

    Xs, ys = get_data_classif('3gauss', ns)
    Xt, yt = get_data_classif('3gauss2', nt)

    otda = ot.da.SinkhornL1l2Transport()

    # test its computed
    otda.fit(Xs=Xs, ys=ys, Xt=Xt)
    assert hasattr(otda, "cost_")
    assert hasattr(otda, "coupling_")
    assert hasattr(otda, "log_")

    # test dimensions of coupling
    assert_equal(otda.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    Xs_new, _ = get_data_classif('3gauss', ns + 1)
    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # test inverse transform
    transp_Xt = otda.inverse_transform(Xt=Xt)
    assert_equal(transp_Xt.shape, Xt.shape)

    Xt_new, _ = get_data_classif('3gauss2', nt + 1)
    transp_Xt_new = otda.inverse_transform(Xt=Xt_new)

    # check that the oos method is working
    assert_equal(transp_Xt_new.shape, Xt_new.shape)

    # test fit_transform
    transp_Xs = otda.fit_transform(Xs=Xs, ys=ys, Xt=Xt)
    assert_equal(transp_Xs.shape, Xs.shape)

    # test unsupervised vs semi-supervised mode
    otda_unsup = ot.da.SinkhornL1l2Transport()
    otda_unsup.fit(Xs=Xs, ys=ys, Xt=Xt)
    n_unsup = np.sum(otda_unsup.cost_)

    otda_semi = ot.da.SinkhornL1l2Transport()
    otda_semi.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt)
    assert_equal(otda_semi.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
    n_semisup = np.sum(otda_semi.cost_)

    # check that the cost matrix norms are indeed different
    assert n_unsup != n_semisup, "semisupervised mode not working"

    # check that the coupling forbids mass transport between labeled source
    # and labeled target samples
    mass_semi = np.sum(
        otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max])
    mass_semi = otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max]
    assert_allclose(mass_semi, np.zeros_like(mass_semi), rtol=1e-9, atol=1e-9)

    # check everything runs well with log=True
    otda = ot.da.SinkhornL1l2Transport(log=True)
    otda.fit(Xs=Xs, ys=ys, Xt=Xt)
    assert len(otda.log_.keys()) != 0
Esempio n. 6
0
def test_mapping_transport_class():
    """test_mapping_transport
    """

    ns = 60
    nt = 120

    Xs, ys = get_data_classif('3gauss', ns)
    Xt, yt = get_data_classif('3gauss2', nt)
    Xs_new, _ = get_data_classif('3gauss', ns + 1)

    ##########################################################################
    # kernel == linear mapping tests
    ##########################################################################

    # check computation and dimensions if bias == False
    otda = ot.da.MappingTransport(kernel="linear", bias=False)
    otda.fit(Xs=Xs, Xt=Xt)
    assert hasattr(otda, "coupling_")
    assert hasattr(otda, "mapping_")
    assert hasattr(otda, "log_")

    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.mapping_.shape, ((Xs.shape[1], Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # check computation and dimensions if bias == True
    otda = ot.da.MappingTransport(kernel="linear", bias=True)
    otda.fit(Xs=Xs, Xt=Xt)
    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.mapping_.shape, ((Xs.shape[1] + 1, Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    ##########################################################################
    # kernel == gaussian mapping tests
    ##########################################################################

    # check computation and dimensions if bias == False
    otda = ot.da.MappingTransport(kernel="gaussian", bias=False)
    otda.fit(Xs=Xs, Xt=Xt)

    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.mapping_.shape, ((Xs.shape[0], Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # check computation and dimensions if bias == True
    otda = ot.da.MappingTransport(kernel="gaussian", bias=True)
    otda.fit(Xs=Xs, Xt=Xt)
    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.mapping_.shape, ((Xs.shape[0] + 1, Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # check everything runs well with log=True
    otda = ot.da.MappingTransport(kernel="gaussian", log=True)
    otda.fit(Xs=Xs, Xt=Xt)
    assert len(otda.log_.keys()) != 0
Esempio n. 7
0
def test_sinkhorn_l1l2_transport_class():
    """test_sinkhorn_transport
    """

    ns = 150
    nt = 200

    Xs, ys = get_data_classif('3gauss', ns)
    Xt, yt = get_data_classif('3gauss2', nt)

    otda = ot.da.SinkhornL1l2Transport()

    # test its computed
    otda.fit(Xs=Xs, ys=ys, Xt=Xt)
    assert hasattr(otda, "cost_")
    assert hasattr(otda, "coupling_")
    assert hasattr(otda, "log_")

    # test dimensions of coupling
    assert_equal(otda.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(
        np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(
        np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    Xs_new, _ = get_data_classif('3gauss', ns + 1)
    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # test inverse transform
    transp_Xt = otda.inverse_transform(Xt=Xt)
    assert_equal(transp_Xt.shape, Xt.shape)

    Xt_new, _ = get_data_classif('3gauss2', nt + 1)
    transp_Xt_new = otda.inverse_transform(Xt=Xt_new)

    # check that the oos method is working
    assert_equal(transp_Xt_new.shape, Xt_new.shape)

    # test fit_transform
    transp_Xs = otda.fit_transform(Xs=Xs, ys=ys, Xt=Xt)
    assert_equal(transp_Xs.shape, Xs.shape)

    # test unsupervised vs semi-supervised mode
    otda_unsup = ot.da.SinkhornL1l2Transport()
    otda_unsup.fit(Xs=Xs, ys=ys, Xt=Xt)
    n_unsup = np.sum(otda_unsup.cost_)

    otda_semi = ot.da.SinkhornL1l2Transport()
    otda_semi.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt)
    assert_equal(otda_semi.cost_.shape, ((Xs.shape[0], Xt.shape[0])))
    n_semisup = np.sum(otda_semi.cost_)

    # check that the cost matrix norms are indeed different
    assert n_unsup != n_semisup, "semisupervised mode not working"

    # check that the coupling forbids mass transport between labeled source
    # and labeled target samples
    mass_semi = np.sum(
        otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max])
    mass_semi = otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max]
    assert_allclose(mass_semi, np.zeros_like(mass_semi),
                    rtol=1e-9, atol=1e-9)

    # check everything runs well with log=True
    otda = ot.da.SinkhornL1l2Transport(log=True)
    otda.fit(Xs=Xs, ys=ys, Xt=Xt)
    assert len(otda.log_.keys()) != 0
Esempio n. 8
0
def test_mapping_transport_class():
    """test_mapping_transport
    """

    ns = 60
    nt = 120

    Xs, ys = get_data_classif('3gauss', ns)
    Xt, yt = get_data_classif('3gauss2', nt)
    Xs_new, _ = get_data_classif('3gauss', ns + 1)

    ##########################################################################
    # kernel == linear mapping tests
    ##########################################################################

    # check computation and dimensions if bias == False
    otda = ot.da.MappingTransport(kernel="linear", bias=False)
    otda.fit(Xs=Xs, Xt=Xt)
    assert hasattr(otda, "coupling_")
    assert hasattr(otda, "mapping_")
    assert hasattr(otda, "log_")

    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.mapping_.shape, ((Xs.shape[1], Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(
        np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(
        np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # check computation and dimensions if bias == True
    otda = ot.da.MappingTransport(kernel="linear", bias=True)
    otda.fit(Xs=Xs, Xt=Xt)
    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.mapping_.shape, ((Xs.shape[1] + 1, Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(
        np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(
        np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    ##########################################################################
    # kernel == gaussian mapping tests
    ##########################################################################

    # check computation and dimensions if bias == False
    otda = ot.da.MappingTransport(kernel="gaussian", bias=False)
    otda.fit(Xs=Xs, Xt=Xt)

    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.mapping_.shape, ((Xs.shape[0], Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(
        np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(
        np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # check computation and dimensions if bias == True
    otda = ot.da.MappingTransport(kernel="gaussian", bias=True)
    otda.fit(Xs=Xs, Xt=Xt)
    assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0])))
    assert_equal(otda.mapping_.shape, ((Xs.shape[0] + 1, Xt.shape[1])))

    # test margin constraints
    mu_s = unif(ns)
    mu_t = unif(nt)
    assert_allclose(
        np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3)
    assert_allclose(
        np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3)

    # test transform
    transp_Xs = otda.transform(Xs=Xs)
    assert_equal(transp_Xs.shape, Xs.shape)

    transp_Xs_new = otda.transform(Xs_new)

    # check that the oos method is working
    assert_equal(transp_Xs_new.shape, Xs_new.shape)

    # check everything runs well with log=True
    otda = ot.da.MappingTransport(kernel="gaussian", log=True)
    otda.fit(Xs=Xs, Xt=Xt)
    assert len(otda.log_.keys()) != 0