def test_linear_mapping(): ns = 150 nt = 200 Xs, ys = get_data_classif('3gauss', ns) Xt, yt = get_data_classif('3gauss2', nt) A, b = ot.da.OT_mapping_linear(Xs, Xt) Xst = Xs.dot(A) + b Ct = np.cov(Xt.T) Cst = np.cov(Xst.T) np.testing.assert_allclose(Ct, Cst, rtol=1e-2, atol=1e-2)
def test_linear_mapping_class(): ns = 150 nt = 200 Xs, ys = get_data_classif('3gauss', ns) Xt, yt = get_data_classif('3gauss2', nt) otmap = ot.da.LinearTransport() otmap.fit(Xs=Xs, Xt=Xt) assert hasattr(otmap, "A_") assert hasattr(otmap, "B_") assert hasattr(otmap, "A1_") assert hasattr(otmap, "B1_") Xst = otmap.transform(Xs=Xs) Ct = np.cov(Xt.T) Cst = np.cov(Xst.T) np.testing.assert_allclose(Ct, Cst, rtol=1e-2, atol=1e-2)
def test_sinkhorn_l1l2_transport_class(): """test_sinkhorn_transport """ ns = 150 nt = 200 Xs, ys = get_data_classif('3gauss', ns) Xt, yt = get_data_classif('3gauss2', nt) otda = ot.da.SinkhornL1l2Transport() # test its computed otda.fit(Xs=Xs, ys=ys, Xt=Xt) assert hasattr(otda, "cost_") assert hasattr(otda, "coupling_") assert hasattr(otda, "log_") # test dimensions of coupling assert_equal(otda.cost_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) Xs_new, _ = get_data_classif('3gauss', ns + 1) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) # test inverse transform transp_Xt = otda.inverse_transform(Xt=Xt) assert_equal(transp_Xt.shape, Xt.shape) Xt_new, _ = get_data_classif('3gauss2', nt + 1) transp_Xt_new = otda.inverse_transform(Xt=Xt_new) # check that the oos method is working assert_equal(transp_Xt_new.shape, Xt_new.shape) # test fit_transform transp_Xs = otda.fit_transform(Xs=Xs, ys=ys, Xt=Xt) assert_equal(transp_Xs.shape, Xs.shape) # test unsupervised vs semi-supervised mode otda_unsup = ot.da.SinkhornL1l2Transport() otda_unsup.fit(Xs=Xs, ys=ys, Xt=Xt) n_unsup = np.sum(otda_unsup.cost_) otda_semi = ot.da.SinkhornL1l2Transport() otda_semi.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt) assert_equal(otda_semi.cost_.shape, ((Xs.shape[0], Xt.shape[0]))) n_semisup = np.sum(otda_semi.cost_) # check that the cost matrix norms are indeed different assert n_unsup != n_semisup, "semisupervised mode not working" # check that the coupling forbids mass transport between labeled source # and labeled target samples mass_semi = np.sum( otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max]) mass_semi = otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max] assert_allclose(mass_semi, np.zeros_like(mass_semi), rtol=1e-9, atol=1e-9) # check everything runs well with log=True otda = ot.da.SinkhornL1l2Transport(log=True) otda.fit(Xs=Xs, ys=ys, Xt=Xt) assert len(otda.log_.keys()) != 0
def test_mapping_transport_class(): """test_mapping_transport """ ns = 60 nt = 120 Xs, ys = get_data_classif('3gauss', ns) Xt, yt = get_data_classif('3gauss2', nt) Xs_new, _ = get_data_classif('3gauss', ns + 1) ########################################################################## # kernel == linear mapping tests ########################################################################## # check computation and dimensions if bias == False otda = ot.da.MappingTransport(kernel="linear", bias=False) otda.fit(Xs=Xs, Xt=Xt) assert hasattr(otda, "coupling_") assert hasattr(otda, "mapping_") assert hasattr(otda, "log_") assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.mapping_.shape, ((Xs.shape[1], Xt.shape[1]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) # check computation and dimensions if bias == True otda = ot.da.MappingTransport(kernel="linear", bias=True) otda.fit(Xs=Xs, Xt=Xt) assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.mapping_.shape, ((Xs.shape[1] + 1, Xt.shape[1]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) ########################################################################## # kernel == gaussian mapping tests ########################################################################## # check computation and dimensions if bias == False otda = ot.da.MappingTransport(kernel="gaussian", bias=False) otda.fit(Xs=Xs, Xt=Xt) assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.mapping_.shape, ((Xs.shape[0], Xt.shape[1]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) # check computation and dimensions if bias == True otda = ot.da.MappingTransport(kernel="gaussian", bias=True) otda.fit(Xs=Xs, Xt=Xt) assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.mapping_.shape, ((Xs.shape[0] + 1, Xt.shape[1]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose(np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose(np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) # check everything runs well with log=True otda = ot.da.MappingTransport(kernel="gaussian", log=True) otda.fit(Xs=Xs, Xt=Xt) assert len(otda.log_.keys()) != 0
def test_sinkhorn_l1l2_transport_class(): """test_sinkhorn_transport """ ns = 150 nt = 200 Xs, ys = get_data_classif('3gauss', ns) Xt, yt = get_data_classif('3gauss2', nt) otda = ot.da.SinkhornL1l2Transport() # test its computed otda.fit(Xs=Xs, ys=ys, Xt=Xt) assert hasattr(otda, "cost_") assert hasattr(otda, "coupling_") assert hasattr(otda, "log_") # test dimensions of coupling assert_equal(otda.cost_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose( np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose( np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) Xs_new, _ = get_data_classif('3gauss', ns + 1) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) # test inverse transform transp_Xt = otda.inverse_transform(Xt=Xt) assert_equal(transp_Xt.shape, Xt.shape) Xt_new, _ = get_data_classif('3gauss2', nt + 1) transp_Xt_new = otda.inverse_transform(Xt=Xt_new) # check that the oos method is working assert_equal(transp_Xt_new.shape, Xt_new.shape) # test fit_transform transp_Xs = otda.fit_transform(Xs=Xs, ys=ys, Xt=Xt) assert_equal(transp_Xs.shape, Xs.shape) # test unsupervised vs semi-supervised mode otda_unsup = ot.da.SinkhornL1l2Transport() otda_unsup.fit(Xs=Xs, ys=ys, Xt=Xt) n_unsup = np.sum(otda_unsup.cost_) otda_semi = ot.da.SinkhornL1l2Transport() otda_semi.fit(Xs=Xs, ys=ys, Xt=Xt, yt=yt) assert_equal(otda_semi.cost_.shape, ((Xs.shape[0], Xt.shape[0]))) n_semisup = np.sum(otda_semi.cost_) # check that the cost matrix norms are indeed different assert n_unsup != n_semisup, "semisupervised mode not working" # check that the coupling forbids mass transport between labeled source # and labeled target samples mass_semi = np.sum( otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max]) mass_semi = otda_semi.coupling_[otda_semi.cost_ == otda_semi.limit_max] assert_allclose(mass_semi, np.zeros_like(mass_semi), rtol=1e-9, atol=1e-9) # check everything runs well with log=True otda = ot.da.SinkhornL1l2Transport(log=True) otda.fit(Xs=Xs, ys=ys, Xt=Xt) assert len(otda.log_.keys()) != 0
def test_mapping_transport_class(): """test_mapping_transport """ ns = 60 nt = 120 Xs, ys = get_data_classif('3gauss', ns) Xt, yt = get_data_classif('3gauss2', nt) Xs_new, _ = get_data_classif('3gauss', ns + 1) ########################################################################## # kernel == linear mapping tests ########################################################################## # check computation and dimensions if bias == False otda = ot.da.MappingTransport(kernel="linear", bias=False) otda.fit(Xs=Xs, Xt=Xt) assert hasattr(otda, "coupling_") assert hasattr(otda, "mapping_") assert hasattr(otda, "log_") assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.mapping_.shape, ((Xs.shape[1], Xt.shape[1]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose( np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose( np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) # check computation and dimensions if bias == True otda = ot.da.MappingTransport(kernel="linear", bias=True) otda.fit(Xs=Xs, Xt=Xt) assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.mapping_.shape, ((Xs.shape[1] + 1, Xt.shape[1]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose( np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose( np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) ########################################################################## # kernel == gaussian mapping tests ########################################################################## # check computation and dimensions if bias == False otda = ot.da.MappingTransport(kernel="gaussian", bias=False) otda.fit(Xs=Xs, Xt=Xt) assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.mapping_.shape, ((Xs.shape[0], Xt.shape[1]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose( np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose( np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) # check computation and dimensions if bias == True otda = ot.da.MappingTransport(kernel="gaussian", bias=True) otda.fit(Xs=Xs, Xt=Xt) assert_equal(otda.coupling_.shape, ((Xs.shape[0], Xt.shape[0]))) assert_equal(otda.mapping_.shape, ((Xs.shape[0] + 1, Xt.shape[1]))) # test margin constraints mu_s = unif(ns) mu_t = unif(nt) assert_allclose( np.sum(otda.coupling_, axis=0), mu_t, rtol=1e-3, atol=1e-3) assert_allclose( np.sum(otda.coupling_, axis=1), mu_s, rtol=1e-3, atol=1e-3) # test transform transp_Xs = otda.transform(Xs=Xs) assert_equal(transp_Xs.shape, Xs.shape) transp_Xs_new = otda.transform(Xs_new) # check that the oos method is working assert_equal(transp_Xs_new.shape, Xs_new.shape) # check everything runs well with log=True otda = ot.da.MappingTransport(kernel="gaussian", log=True) otda.fit(Xs=Xs, Xt=Xt) assert len(otda.log_.keys()) != 0