def test_reverse(self): board = Board.init_board() actual = put_and_reverse((4, 5), board) expected = Board.init_board().board expected[4][4] = 1 expected[4][5] = 1 np.testing.assert_array_equal(expected, actual.board)
def test_multi_size_reverse(self): board = Board.init_board() board.board[4][5] = -1 actual = put_and_reverse((4, 6), board) expected = Board.init_board().board expected[4][4] = 1 expected[4][5] = 1 expected[4][6] = 1 np.testing.assert_array_equal(expected, actual.board)
def test_select_node(self): node = Node(Board.init_board()) nodes = [Node(Board.init_board()) for _ in range(4)] node.children = nodes for i in range(3): nodes[i].w = 2 nodes[i].n = 4 actual = select_node_ucb(node, 1.0) expected = nodes[-1] self.assertEqual(actual, expected)
def play(network, ai_param=None): if ai_param is None: ai_param = dict(play_count=100) board = Board.init_board() ai1 = AlphaZero(network, history=True, **ai_param) ai2 = AlphaZero(network, history=True, **ai_param) hands = [] while True: if not extract_valid_hand(board): board.side ^= True hands.append(Hand.pass_hand()) if not extract_valid_hand(board): break if board.side: hand = ai1.put(board, hands) else: hand = ai2.put(board, hands) hands.append(hand) board = put_and_reverse(hand, board) result = judge_simple(board) history1 = ai1.history if isinstance(ai1, AlphaZero) else [] history2 = ai2.history if isinstance(ai1, AlphaZero) else [] for x in history1: x[-1] = result for x in history2: x[0] = x[0] * -1 x[-1] = -result return history1 + history2
def main(sente=True): board = Board.init_board() board.side = sente ai = MonteCarloAI() print(view_board(board)) while True: if not extract_valid_hand(board): board.side ^= True if not extract_valid_hand(board): break if board.side: hand = input_hand(board) else: if (board.board == 0).sum() < 8: # 計算時間に余裕があるので全探索 hand = ai.put_exhaustive_search(board) else: hand = ai.put(board) print("AI put: {}".format(hand)) board = put_and_reverse(hand, board) print(view_board(board)) print("=" * 10 + " GAME OVER " + "=" * 10) x_count = (board.board == 1).sum() o_count = (board.board == -1).sum() print("x: {}, o: {}".format(x_count, o_count))
def evaluate(ai1, ai2, sente=True, is_view=False): board = Board.init_board() if is_view: print(view_board(board)) hands = [] while True: if not extract_valid_hand(board): board.side ^= True hands.append(Hand.pass_hand()) # print("pass hand!!") if not extract_valid_hand(board): break if board.side is sente: hand = ai1.put(board, hands) else: hand = ai2.put(board, hands) hands.append(hand) board = put_and_reverse(hand, board) if is_view: print(view_board(board)) # print(ai2.history) if is_view: print("=" * 10 + " GAME OVER " + "=" * 10) x_count = (board.board == 1).sum() o_count = (board.board == -1).sum() print("x: {}, o: {}".format(x_count, o_count)) return judge_simple(board) * (1 if sente else -1)
def parse(s: str) -> Tuple[int, int]: x, y = s[0], s[1] x = ord(x) - ord("a") y = int(y) - 1 # to 0-indexed # check array index out of bound Hand((y, x), Board.init_board()) return y, x
def main(sente=True): board = Board.init_board() ai = MiniMaxAI(5) print(view_board(board)) hands = [] while True: if not extract_valid_hand(board): board.side ^= True hands.append(Hand.pass_hand()) if not extract_valid_hand(board): break if board.side ^ sente: hand = input_hand(board) else: hand = ai.put(board, hands) hands.append(hand) print("AI put: {}".format(hand)) if (board.board == 0).sum() < 12: # 計算時間に余裕があるのでdeepに読む ai.depth = 8 board = put_and_reverse(hand, board) print(view_board(board)) print("=" * 10 + " GAME OVER " + "=" * 10) x_count = (board.board == 1).sum() o_count = (board.board == -1).sum() print("x: {}, o: {}".format(x_count, o_count))
def test_score(self): def test(board: Board): def score(b: Board): return float(b.board[4][5] * 100) actual_hands, actual_score = self.searcher.search_mini_max(board, score, 1) actual_hands = [hand.hand for hand in actual_hands] self.assertEqual(actual_score, 100) self.assertEqual(actual_hands, [(4, 5)]) board = Board.init_board() self._test(board, test)
def test_cant_put(self): def test(board): def score(_: Board): return 0 actual_hands, actual_score = self.searcher.search_mini_max(board, score, 3) actual_hands = [hand.hand for hand in actual_hands] self.assertEqual(actual_score, WIN_SCORE) self.assertIn(actual_hands, [[(4, 5)], [(5, 4)], [(5, 5)]]) board = Board.init_board() board.board[3][3] = 1 self._test(board, test)
def test_random(self): def test(board): for i in range(5): _sb = np.random.normal(size=(8, 8)) def score(b: Board): return float((b.board * _sb).sum()) expected_hands, expected_score = self.searcher.search_mini_max(board, score, 4) actual_hands, actual_score = self.searcher.search_alpha_beta(board, score, 4) actual_hands = [hand.hand for hand in actual_hands] expected_hands = [hand.hand for hand in expected_hands] self.assertEqual(expected_score, actual_score) self.assertEqual(expected_hands, actual_hands) board = Board.init_board() self._test(board, test)
def test_depth2(self): def test(board): def score(b: Board): sb = np.zeros((8, 8)) sb[3][2] = 500 sb[4][5] = 1000 sb[5][5] = 50 sb[6][5] = 10 sb[3][5] = 45 sb[2][6] = 1 return (b.board * sb).sum() actual_hands, actual_score = self.searcher.search_mini_max(board, score, 2) actual_hands = [hand.hand for hand in actual_hands] self.assertEqual(actual_score, 950) self.assertEqual(actual_hands, [(4, 5), (5, 5)]) board = Board.init_board() self._test(board, test)
def test_valid(self): board = Board.init_board() actual = is_valid_hand((4, 5), board) self.assertTrue(actual)
def test_invalid_shape(self): with self.assertRaises(IllegalIndexException): Hand((0, -1), Board.init_board())
x = self.conv(x) x = self.resnet(x) x = F.max_pool2d(x, kernel_size=x.size()[2:]) x = torch.squeeze(x, -1) x = torch.squeeze(x, -1) p = self.p_clf(x) v = self.v_clf(x) p = F.softmax(p, dim=-1) v = torch.tanh(v) return p, v if __name__ == '__main__': # test from othello.model import Board from othello.helper import put_and_reverse input = Board.init_board() # input = put_and_reverse((2, 3), input) x = np.array([[input.board == 1, input.board == -1]], dtype=np.float32) network = Network() network.load_state_dict(torch.load("model/latest.pth")) p, v = network(x) p = p.to("cpu").detach().numpy().copy() v = v.to("cpu").detach().numpy().copy() print(sorted(p[-1])[::-1]) p = p[:, :-1].reshape((8, 8)) np.set_printoptions(precision=1) [print(p[i, :]) for i in range(8)] print(v)
def test_false_side(self): board = Board.init_board(False) actual = extract_valid_hand(board) expected = [(2, 4), (4, 2), (3, 5), (5, 3)] self.assertEquals(set(expected), set(i.hand for i in actual))
def test(self): def test(board): self.searcher.search_monte_carlo(board, 20) board = Board.init_board() self._test(board, test)
def test_jump(self): board = Board.init_board() board.board[4][5] = 1 actual = is_valid_hand((4, 6), board) self.assertFalse(actual)
def test_diagonal(self): board = Board.init_board() board.board[3][3] = 1 actual = is_valid_hand((5, 5), board) self.assertTrue(actual)
def test_invalid(self): board = Board.init_board(False) actual = is_valid_hand((4, 5), board) self.assertFalse(actual)