Esempio n. 1
0
    def validate(self, valid_iter, step=0):
        """ Validate model.
            valid_iter: validate data iterator
        Returns:
            :obj:`nmt.Statistics`: validation loss statistics
        """
        # Set model in validating mode.
        self.model.eval()
        stats = Statistics()

        with torch.no_grad():
            for batch in valid_iter:
                src = batch.src
                labels = batch.src_sent_labels
                #segs = batch.segs
                clss = batch.clss
                #mask = batch.mask_src
                mask_cls = batch.mask_cls

                #sent_scores, mask = self.model(src, segs, clss, mask, mask_cls)
                sent_scores, mask = self.model(src, clss, mask_cls)

                loss = self.loss(sent_scores, labels.float())
                loss = (loss * mask.float()).sum()
                batch_stats = Statistics(float(loss.cpu().data.numpy()),
                                         len(labels))
                stats.update(batch_stats)
            self._report_step(0, step, valid_stats=stats)
            return stats
Esempio n. 2
0
    def validate(self, valid_iter):
        """ Validate model.
            valid_iter: validate data iterator
        Returns:
            :obj:`nmt.Statistics`: validation loss statistics
        """
        # Set model in validating mode.
        self.model.eval()

        stats = Statistics()

        with torch.no_grad():
            for batch in valid_iter:
                src = batch.src
                tgt = batch.tgt
                outputs, _ = self.model(src, tgt)

                batch_stats = self.valid_loss.monolithic_compute_loss(
                    batch, outputs)
                stats.update(batch_stats)
            return stats
Esempio n. 3
0
    def sharded_compute_loss(self, batch, output, shard_size, normalization):
        """Compute the forward loss and backpropagate.  Computation is done
        with shards and optionally truncation for memory efficiency.

        Also supports truncated BPTT for long sequences by taking a
        range in the decoder output sequence to back propagate in.
        Range is from `(cur_trunc, cur_trunc + trunc_size)`.

        Note sharding is an exact efficiency trick to relieve memory
        required for the generation buffers. Truncation is an
        approximate efficiency trick to relieve the memory required
        in the RNN buffers.

        Args:
          batch (batch) : batch of labeled examples
          output (:obj:`FloatTensor`) :
              output of decoder model `[tgt_len x batch x hidden]`
          attns (dict) : dictionary of attention distributions
              `[tgt_len x batch x src_len]`
          cur_trunc (int) : starting position of truncation window
          trunc_size (int) : length of truncation window
          shard_size (int) : maximum number of examples in a shard
          normalization (int) : Loss is divided by this number

        Returns:
            :obj:`onmt.utils.Statistics`: validation loss statistics

        """
        batch_stats = Statistics()
        shard_state = self._make_shard_state(batch, output)
        for shard in shards(shard_state, shard_size):
            loss, stats = self._compute_loss(batch, **shard)
            loss.div(float(normalization)).backward()
            batch_stats.update(stats)

        return batch_stats
Esempio n. 4
0
    def test(self, test_iter, step, cal_lead=False, cal_oracle=False):
        """ Validate model.
            valid_iter: validate data iterator
        Returns:
            :obj:`nmt.Statistics`: validation loss statistics
        """

        # Set model in validating mode.
        def _get_ngrams(n, text):
            ngram_set = set()
            text_length = len(text)
            max_index_ngram_start = text_length - n
            for i in range(max_index_ngram_start + 1):
                ngram_set.add(tuple(text[i:i + n]))
            return ngram_set

        def _block_tri(c, p):
            tri_c = _get_ngrams(3, c.split())
            for s in p:
                tri_s = _get_ngrams(3, s.split())
                if len(tri_c.intersection(tri_s)) > 0:
                    return True
            return False

        if (not cal_lead and not cal_oracle):
            self.model.eval()
        stats = Statistics()

        can_path = '%s_step%d.candidate' % (self.args.result_path, step)
        gold_path = '%s_step%d.gold' % (self.args.result_path, step)
        with open(can_path, 'w') as save_pred:
            with open(gold_path, 'w') as save_gold:
                with torch.no_grad():
                    for batch in test_iter:
                        src = batch.src
                        labels = batch.src_sent_labels
                        #segs = batch.segs
                        clss = batch.clss
                        #mask = batch.mask_src
                        mask_cls = batch.mask_cls

                        gold = []
                        pred = []

                        if (cal_lead):
                            print('not implemented!')
                            exit(1)
                            #selected_ids = [list(range(batch.clss.size(1)))] * batch.batch_size
                        elif (cal_oracle):
                            print('not implemented!')
                            exit(1)
                            #selected_ids = [[j for j in range(batch.clss.size(1)) if labels[i][j] == 1] for i in
                            #range(batch.batch_size)]
                        else:
                            sent_scores, mask = self.model(src, clss, mask_cls)

                            loss = self.loss(sent_scores, labels.float())
                            loss = (loss * mask.float()).sum()
                            batch_stats = Statistics(
                                float(loss.cpu().data.numpy()), len(labels))
                            stats.update(batch_stats)

                            sent_scores = sent_scores + mask.float()
                            sent_scores = sent_scores.cpu().data.numpy()
                            selected_ids = np.argsort(-sent_scores, 1)
                        # selected_ids = np.sort(selected_ids,1)
                        for i, idx in enumerate(selected_ids):
                            _pred = []
                            if (len(batch.src_str[i]) == 0):
                                continue
                            for j in selected_ids[i][:len(batch.src_str[i])]:
                                if (j >= len(batch.src_str[i])):
                                    continue
                                candidate = batch.src_str[i][j].strip()
                                if (self.args.block_trigram):
                                    if (not _block_tri(candidate, _pred)):
                                        _pred.append(candidate)
                                else:
                                    _pred.append(candidate)

                                if ((not cal_oracle)
                                        and (not self.args.recall_eval)
                                        and len(_pred) == 3):
                                    break

                            _pred = '<q>'.join(_pred)
                            if (self.args.recall_eval):
                                _pred = ' '.join(
                                    _pred.split()
                                    [:len(batch.tgt_str[i].split())])

                            pred.append(_pred)
                            gold.append(batch.tgt_str[i])

                        for i in range(len(gold)):
                            save_gold.write(gold[i].strip() + '\n')
                        for i in range(len(pred)):
                            save_pred.write(pred[i].strip() + '\n')
        if (step != -1 and self.args.report_rouge):
            #raise NotImplementedError
            self.logger.info("Calculating Rouge")
            candidates = codecs.open(can_path, encoding="utf-8")
            references = codecs.open(gold_path, encoding="utf-8")
            rouges = test_rouge(candidates, references, 1)
            self.logger.info('Rouges at step %d \n%s' %
                             (step, rouge_results_to_str(rouges)))
            if self.tensorboard_writer is not None:
                self.tensorboard_writer.add_scalar('test/rouge1-F',
                                                   rouges['rouge_1_f_score'],
                                                   step)
                self.tensorboard_writer.add_scalar('test/rouge2-F',
                                                   rouges['rouge_2_f_score'],
                                                   step)
                self.tensorboard_writer.add_scalar('test/rougeL-F',
                                                   rouges['rouge_l_f_score'],
                                                   step)

        self._report_step(0, step, valid_stats=stats)

        return stats