Esempio n. 1
0
def input_preparation(I_MS_LR, I_PAN, param):
    """pre-process input to make suitable tensor"""

    NDxI_LR = []

    mav_value = 2**(np.float32(param['L']))

    #compute radiometric indexes
    if param['inputType'] == 'MS_PAN_NDxI':
        if I_MS_LR.shape[0] == 8:
            NDxI_LR = np.stack(((I_MS_LR[4, :, :] - I_MS_LR[7, :, :]) /
                                (I_MS_LR[4, :, :] + I_MS_LR[7, :, :]),
                                (I_MS_LR[0, :, :] - I_MS_LR[7, :, :]) /
                                (I_MS_LR[0, :, :] + I_MS_LR[7, :, :]),
                                (I_MS_LR[2, :, :] - I_MS_LR[3, :, :]) /
                                (I_MS_LR[2, :, :] + I_MS_LR[3, :, :]),
                                (I_MS_LR[5, :, :] - I_MS_LR[0, :, :]) /
                                (I_MS_LR[5, :, :] + I_MS_LR[0, :, :])),
                               axis=0)
        else:
            NDxI_LR = np.stack(((I_MS_LR[3, :, :] - I_MS_LR[2, :, :]) /
                                (I_MS_LR[3, :, :] + I_MS_LR[2, :, :]),
                                (I_MS_LR[1, :, :] - I_MS_LR[3, :, :]) /
                                (I_MS_LR[1, :, :] + I_MS_LR[3, :, :])),
                               axis=0)

    #interpolation, application to Wald's protocol
    if param['typeInterp'] == 'interp23tap':

        I_MS = interp23(I_MS_LR, param['ratio'])

        #        I_MS_interp_matlab = sio.loadmat('I_MS_LR_ds.mat')
        #        I_MS = np.array(I_MS_interp_matlab['I_MS_LR_ds']).transpose(2,0,1)

        if len(NDxI_LR) != 0:
            NDxI = interp23(NDxI_LR, param['ratio'])
            print('ok')
    else:
        sys.exit('interpolation not supported')

    if param['inputType'] == 'MS':
        I_in = I_MS.astype('single') / mav_value
    elif param['inputType'] == 'MS_PAN':

        I_in = np.vstack((I_MS, I_PAN)).astype('single') / mav_value

    elif param['inputType'] == 'MS_PAN_NDxI':
        I_in = np.vstack((I_MS, I_PAN)).astype('single') / mav_value
        I_in = np.vstack((I_in, NDxI)).astype('single')
    else:
        sys.exit('Configuration not supported')

    return I_in
def input_preparation(I_MS_LR,I_PAN,param):
    """pre-process input to make suitable tensor"""
  
    NDxI_LR = [];
        
    mav_value=2**(np.float32(param['L']))

    #compute radiometric indexes
    if param['inputType']=='MS_PAN_NDxI':
        if I_MS_LR.shape[0] == 8:
            NDxI_LR = np.stack((
                  (I_MS_LR[4,:,:]-I_MS_LR[7,:,:])/(I_MS_LR[4,:,:]+I_MS_LR[7,:,:]),
                  (I_MS_LR[0,:,:]-I_MS_LR[7,:,:])/(I_MS_LR[0,:,:]+I_MS_LR[7,:,:]),
                  (I_MS_LR[2,:,:]-I_MS_LR[3,:,:])/(I_MS_LR[2,:,:]+I_MS_LR[3,:,:]),
                  (I_MS_LR[5,:,:]-I_MS_LR[0,:,:])/(I_MS_LR[5,:,:]+I_MS_LR[0,:,:])),axis=0 )
        else:
            NDxI_LR = np.stack((
                                (I_MS_LR[3,:,:]-I_MS_LR[2,:,:])/(I_MS_LR[3,:,:]+I_MS_LR[2,:,:]),
                                (I_MS_LR[1,:,:]-I_MS_LR[3,:,:])/(I_MS_LR[1,:,:]+I_MS_LR[3,:,:])), axis=0 )
           
    #interpolation
    if param['typeInterp']=='interp23tap':
        I_MS = interp23(I_MS_LR, param['ratio'])
        if len(NDxI_LR)!=0:
            NDxI = interp23(NDxI_LR, param['ratio'])
            print 'ok'
    else:
        sys.exit('interpolation not supported')
     
    if param['inputType']=='MS':
        I_in = I_MS.astype('single')/mav_value
    elif param['inputType']=='MS_PAN':
        I_in = np.vstack((I_MS, I_PAN)).astype('single')/mav_value
    elif param['inputType']=='MS_PAN_NDxI':
        I_in = np.vstack((I_MS, I_PAN)).astype('single')/mav_value
        I_in = np.vstack((I_in, NDxI)).astype('single')
    else:
        sys.exit('Configuration not supported')
    
    return I_in
Esempio n. 3
0
def PNN_test_HSMS_ratio_3(
        I_MS_LR, I_PAN, inputImg, param, net, path, mode,
        epochs):  #iniz è uguale a 0 QUI ERA IL PROBLEMA FACEVA UN OVERRIDE

    test_dir_out = path['test_dir_out']
    FTnetwork_dir_out = path['ftnetwork_dir_out']

    #    import pdb; pdb.set_trace()

    # san paolo hs/ms
    param['L'] = 15  # modifica del 23/04
    #    param['ratio']=3
    param['ratio'] = 3  # modificato il 04/04
    param[
        'lr'] = 0.0001  # prec 10e-4                                #modificato il 25/04
    param['patchSize'] = 33  #preced = 33

    #    param['padSize'] = 8

    # per il debug
    #    import pdb; pdb.set_trace()

    if 'inputType' not in param.keys():
        param['inputType'] = 'MS_PAN'

    #fine tuning
    if epochs != 0:

        #        pdb.set_trace()

        fine_tuning(I_MS_LR, I_PAN, param, epochs, FTnetwork_dir_out)
        ft_model_path = FTnetwork_dir_out + '/PNN_model.mat'

        FT_model = sio.loadmat(ft_model_path, squeeze_me=True)  #provo25/04

        from PNN_testing_model import Network, ConvLayer

        layer = []
        for j in range(0, len(FT_model['layers']), 2):
            layer.append(
                ConvLayer(FT_model['layers'][j], FT_model['layers'][j + 1]))
        net = Network(layer)

#        layer=[]
#        for j in range(0,len(param['layers']),2):
#            layer.append(ConvLayer(param['layers'][j], param['layers'][j+1]))
#        net=Network(layer)

#        pdb.set_trace()

    if mode != 'full':
        I_MS_LR, I_PAN = downgrade_images(I_MS_LR, I_PAN, param['ratio'],
                                          param['sensor'])

    I_PAN = np.expand_dims(I_PAN, axis=0)

    NDxI_LR = []
    mav_value = 2**(np.float32(param['L']))

    # compute radiometric indexes
    if param['inputType'] == 'MS_PAN_NDxI':
        if I_MS_LR.shape[0] == 8:
            NDxI_LR = np.stack(((I_MS_LR[4, :, :] - I_MS_LR[7, :, :]) /
                                (I_MS_LR[4, :, :] + I_MS_LR[7, :, :]),
                                (I_MS_LR[0, :, :] - I_MS_LR[7, :, :]) /
                                (I_MS_LR[0, :, :] + I_MS_LR[7, :, :]),
                                (I_MS_LR[2, :, :] - I_MS_LR[3, :, :]) /
                                (I_MS_LR[2, :, :] + I_MS_LR[3, :, :]),
                                (I_MS_LR[5, :, :] - I_MS_LR[0, :, :]) /
                                (I_MS_LR[5, :, :] + I_MS_LR[0, :, :])),
                               axis=0)
        else:
            NDxI_LR = np.stack(((I_MS_LR[3, :, :] - I_MS_LR[2, :, :]) /
                                (I_MS_LR[3, :, :] + I_MS_LR[2, :, :]),
                                (I_MS_LR[1, :, :] - I_MS_LR[3, :, :]) /
                                (I_MS_LR[1, :, :] + I_MS_LR[3, :, :])),
                               axis=0)

#    %input preparation
    if param['typeInterp'] == 'interp23tap':

        #        import pdb; pdb.set_trace()

        I_MS = interp23(I_MS_LR, param['ratio'])
#        if len(NDxI_LR)!=0:
#            NDxI = interp23(NDxI_LR, param['ratio'])
#    else:
#        sys.exit('interpolation not supported')

    if param['inputType'] == 'MS':
        I_in = I_MS.astype('single') / mav_value
    elif param['inputType'] == 'MS_PAN':
        #        import pdb; pdb.set_trace()

        I_in = np.vstack((I_MS, I_PAN)).astype('single') / mav_value
    elif param['inputType'] == 'MS_PAN_NDxI':
        I_in = np.vstack((I_MS, I_PAN)).astype('single') / mav_value
        I_in = np.vstack((I_in, NDxI)).astype('single')
    else:
        sys.exit('Configuration not supported')
    print(I_in.shape)

    #    import pdb; pdb.set_trace()

    I_in_residual = np.expand_dims(I_in, axis=0)
    I_in_residual = I_in_residual[:, :I_MS.shape[0], :, :]

    import pdb
    pdb.set_trace()

    I_in = np.pad(I_in, ((0, 0), (param['padSize'] / 2, param['padSize'] / 2),
                         (param['padSize'] / 2, param['padSize'] / 2)),
                  mode='edge')
    I_in = np.expand_dims(I_in, axis=0)

    #Pansharpening MODIFICA 17/04
    #    param['residual'] = 'false'

    #    I_MS_residual = np.expand_dims(I_MS,axis=0)

    if param['residual'] == 'true' or param['residual'] == 1:
        I_out = net.build(I_in) + I_in_residual[:, :I_MS.shape[0], :, :]
#        I_out = net.build(I_in) + I_MS_residual
    else:
        I_out = net.build(I_in)

    I_out = I_out * mav_value

    return np.squeeze(I_out)
def PNN_test(I_MS_LR, I_PAN, inputImg, param, net, path, mode, epochs=0):

    test_dir_out = path['test_dir_out']
    FTnetwork_dir_out = path['ftnetwork_dir_out']
    param['L'] = inputImg['L']
    param['ratio'] = inputImg['ratio']
    if 'inputType' not in param.keys():
        param['inputType'] = 'MS_PAN'

    #fine tuning
    if epochs != 0:
        fine_tuning(I_MS_LR, I_PAN, param, epochs, FTnetwork_dir_out)
        ft_model_path = FTnetwork_dir_out + '/PNN_model.mat'

        FT_model = sio.loadmat(ft_model_path, squeeze_me=True)

        from PNN_testing_model import Network, ConvLayer

        layer = []
        for j in range(0, len(FT_model['layers']), 2):
            layer.append(
                ConvLayer(FT_model['layers'][j], FT_model['layers'][j + 1]))
        net = Network(layer)

    if mode != 'full':
        I_MS_LR, I_PAN = downgrade_images(I_MS_LR, I_PAN, param['ratio'],
                                          param['sensor'])

    I_PAN = np.expand_dims(I_PAN, axis=0)
    NDxI_LR = []
    mav_value = 2**(np.float32(param['L']))

    # compute radiometric indexes
    if param['inputType'] == 'MS_PAN_NDxI':
        if I_MS_LR.shape[0] == 8:
            NDxI_LR = np.stack(((I_MS_LR[4, :, :] - I_MS_LR[7, :, :]) /
                                (I_MS_LR[4, :, :] + I_MS_LR[7, :, :]),
                                (I_MS_LR[0, :, :] - I_MS_LR[7, :, :]) /
                                (I_MS_LR[0, :, :] + I_MS_LR[7, :, :]),
                                (I_MS_LR[2, :, :] - I_MS_LR[3, :, :]) /
                                (I_MS_LR[2, :, :] + I_MS_LR[3, :, :]),
                                (I_MS_LR[5, :, :] - I_MS_LR[0, :, :]) /
                                (I_MS_LR[5, :, :] + I_MS_LR[0, :, :])),
                               axis=0)
        else:
            NDxI_LR = np.stack(((I_MS_LR[3, :, :] - I_MS_LR[2, :, :]) /
                                (I_MS_LR[3, :, :] + I_MS_LR[2, :, :]),
                                (I_MS_LR[1, :, :] - I_MS_LR[3, :, :]) /
                                (I_MS_LR[1, :, :] + I_MS_LR[3, :, :])),
                               axis=0)

    #input preparation
    if param['typeInterp'] == 'interp23tap':
        I_MS = interp23(I_MS_LR, param['ratio'])
        if len(NDxI_LR) != 0:
            NDxI = interp23(NDxI_LR, param['ratio'])
    else:
        sys.exit('interpolation not supported')

    if param['inputType'] == 'MS':
        I_in = I_MS.astype('single') / mav_value
    elif param['inputType'] == 'MS_PAN':
        I_in = np.vstack((I_MS, I_PAN)).astype('single') / mav_value
    elif param['inputType'] == 'MS_PAN_NDxI':
        I_in = np.vstack((I_MS, I_PAN)).astype('single') / mav_value
        I_in = np.vstack((I_in, NDxI)).astype('single')
    else:
        sys.exit('Configuration not supported')
    print I_in.shape

    I_in_residual = np.expand_dims(I_in, axis=0)
    I_in_residual = I_in_residual[:, :I_MS.shape[0], :, :]
    I_in = np.pad(I_in, ((0, 0), (param['padSize'] / 2, param['padSize'] / 2),
                         (param['padSize'] / 2, param['padSize'] / 2)),
                  mode='edge')
    I_in = np.expand_dims(I_in, axis=0)

    #Pansharpening
    if param['residual']:
        I_out = net.build(I_in) + I_in_residual[:, :I_MS.shape[0], :, :]
    else:
        I_out = net.build(I_in)

    I_out = I_out * mav_value

    return np.squeeze(I_out)