Esempio n. 1
0
    def __init__(self, configfile, jaxb_only=False, port_num=25333):

        self.configfile = configfile
        self.sim_output = None
        self.start_time = None
        self.duration = None

        self.conn = JavaConnect(port_num=port_num)
        if self.conn.pid is not None:
            self.otm = self.conn.gateway.get()
            self.otm.load(configfile, True, jaxb_only)
Esempio n. 2
0
import os
import inspect
from otm.JavaConnect import JavaConnect

this_folder = os.path.dirname(
    os.path.abspath(inspect.getfile(inspect.currentframe())))
root_folder = os.path.dirname(this_folder)
configfile = os.path.join(root_folder, 'configs', 'line.xml')

conn = JavaConnect()

if conn.pid is not None:

    otm = conn.gateway.get()
    otm.load(configfile, True, False)

    conn.close()
Esempio n. 3
0
class OTMWrapper:
    def __init__(self, configfile, jaxb_only=False, port_num=25333):

        self.configfile = configfile
        self.sim_output = None
        self.start_time = None
        self.duration = None

        self.conn = JavaConnect(port_num=port_num)
        if self.conn.pid is not None:
            self.otm = self.conn.gateway.get()
            self.otm.load(configfile, True, jaxb_only)

    def __del__(self):
        if hasattr(self, 'conn') and self.conn is not None:
            self.conn.close()

    def describe(self):
        print("# nodes: {}".format(self.otm.scenario().get_num_nodes()))
        print("# links: {}".format(self.otm.scenario().get_num_links()))
        print("# commodities: {}".format(
            self.otm.scenario().get_num_commodities()))
        print("# subnetworks: {}".format(
            self.otm.scenario().get_num_subnetworks()))
        print("# sensors: {}".format(self.otm.scenario().get_num_sensors()))
        print("# actuators: {}".format(
            self.otm.scenario().get_num_actuators()))
        print("# controllers: {}".format(
            self.otm.scenario().get_num_controllers()))

    def show_network(self, linewidth=1):

        fig, ax = plt.subplots()

        nodes = {}
        for node_id in self.otm.scenario().get_node_ids():
            node_info = self.otm.scenario().get_node_with_id(node_id)
            nodes[node_id] = {'x': node_info.getX(), 'y': node_info.getY()}

        lines = []
        minX = float('Inf')
        maxX = -float('Inf')
        minY = float('Inf')
        maxY = -float('Inf')
        for link_id in self.otm.scenario().get_link_ids():
            link_info = self.otm.scenario().get_link_with_id(link_id)

            start_point = nodes[link_info.getStart_node_id()]
            end_point = nodes[link_info.getEnd_node_id()]

            p0 = (start_point['x'], start_point['y'])
            p1 = (end_point['x'], end_point['y'])
            lines.append([p0, p1])

            minX = min([minX, p0[0], p1[0]])
            maxX = max([maxX, p0[0], p1[0]])
            minY = min([minY, p0[1], p1[1]])
            maxY = max([maxY, p0[1], p1[1]])

        all_colors = [k for k, v in pltc.cnames.items()]
        colors = sample(all_colors, len(lines))
        lc = LineCollection(lines, colors=colors)
        lc.set_linewidths(linewidth)
        ax.add_collection(lc)

        dY = maxY - minY
        dX = maxX - minX

        if (dY > dX):
            ax.set_ylim((minY, maxY))
            c = (maxX + minX) / 2
            ax.set_xlim((c - dY / 2, c + dY / 2))
        else:
            ax.set_xlim((minX, maxX))
            c = (maxY + minY) / 2
            ax.set_ylim((c - dX / 2, c + dX / 2))

        plt.draw()

    # run a simulation
    def run_simple(self, start_time=0., duration=3600., output_dt=30.):

        self.start_time = float(start_time)
        self.duration = float(duration)

        self.otm.output().clear()
        link_ids = self.otm.scenario().get_link_ids()
        self.otm.output().request_links_flow(None, link_ids, float(output_dt))
        self.otm.output().request_links_veh(None, link_ids, float(output_dt))

        # run the simulation
        self.otm.run(self.start_time, self.duration)

    def initialize(self, start_time=0):
        self.otm.initialize(start_time)

    def advance(self, duration):
        self.otm.advance(duration)

    def get_links_table(self):

        link_ids = []
        link_lengths = []
        link_lanes = []
        link_start = []
        link_end = []
        link_is_source = []
        link_is_sink = []
        link_capacity = []
        link_ffspeed = []
        link_jamdensity = []
        link_travel_time = []
        for link_id in self.otm.scenario().get_link_ids():
            link = self.otm.scenario().get_link_with_id(link_id)
            link_ids.append(link_id)
            link_lengths.append(link.getFull_length())
            link_lanes.append(link.getFull_lanes())
            link_start.append(link.getStart_node_id())
            link_end.append(link.getEnd_node_id())
            link_is_source.append(link.isIs_source())
            link_is_sink.append(link.isIs_sink())
            link_capacity.append(link.get_capacity_vphpl())
            link_ffspeed.append(link.get_ffspeed_kph())
            link_jamdensity.append(link.get_jam_density_vpkpl())
            link_travel_time.append(link.getFull_length() * 3.6 /
                                    link.get_ffspeed_kph())

        return pd.DataFrame(
            data={
                'id': link_ids,
                'length_meter': link_lengths,
                'lanes': link_lanes,
                'start_node': link_start,
                'end_node': link_end,
                'is_source': link_is_source,
                'is_sink': link_is_sink,
                'capacity_vphpl': link_capacity,
                'speed_kph': link_ffspeed,
                'max_vpl': link_jamdensity,
                'travel_time_sec': link_travel_time
            })

    def to_networkx(self):
        G = nx.MultiDiGraph()
        for node_id in self.otm.scenario().get_node_ids():
            node = self.otm.scenario().get_node_with_id(node_id)
            G.add_node(node_id, pos=(node.getX(), node.getY()))
        for link_id in self.otm.scenario().get_link_ids():
            link = self.otm.scenario().get_link_with_id(link_id)
            G.add_edge(link.getStart_node_id(),
                       link.getEnd_node_id(),
                       id=link_id)
        return G

    def get_state_trajectory(self):
        X = {
            'time': None,
            'link_ids': None,
            'vehs': None,
            'flows_vph': None,
            'speed_kph': None
        }
        output_data = self.otm.output().get_data()
        it = output_data.iterator()
        while (it.hasNext()):

            output = it.next()

            # collect common link ids
            if X['link_ids'] is None:
                link_list = list(output.get_link_ids())
                X['link_ids'] = np.array(link_list)
            else:
                if not np.array_equal(X['link_ids'],
                                      np.array(list(output.get_link_ids()))):
                    raise ValueError('incompatible output requests')

            # collect common time vector
            if X['time'] is None:
                X['time'] = np.array(list(output.get_time()))
            else:
                if not np.array_equal(X['time'],
                                      np.array(list(output.get_time()))):
                    raise ValueError('incompatible output requests')

        # initialize outputs
        num_time = len(X['time'])
        num_links = len(X['link_ids'])

        X['vehs'] = np.empty([num_links, num_time])
        X['flows_vph'] = np.empty([num_links, num_time])

        it = output_data.iterator()
        while (it.hasNext()):
            output = it.next()

            for i in range(len(link_list)):
                z = output.get_profile_for_linkid(link_list[i])
                classname = output.getClass().getSimpleName()
                if (classname == "OutputLinkFlow"):
                    X['flows_vph'][i, 0:-1] = np.diff(
                        np.array(list(z.get_values()))) * 3600.0 / z.get_dt()
                if (classname == "OutputLinkVehicles"):
                    X['vehs'][i, :] = np.array(list(z.get_values()))

        X['speed_kph'] = np.empty([num_links, num_time])
        for i in range(len(link_list)):
            link_info = self.otm.scenario().get_link_with_id(link_list[i])
            if link_info.isIs_source():
                X['speed_kph'][i, :] = np.nan
            else:
                ffspeed_kph = link_info.get_ffspeed_kph()
                link_length_km = link_info.getFull_length() / 1000.0

                with np.errstate(divide='ignore', invalid='ignore'):
                    speed_kph = np.nan_to_num(
                        link_length_km *
                        np.divide(X['flows_vph'][i], X['vehs'][i]))
                speed_kph[speed_kph > ffspeed_kph] = ffspeed_kph
                X['speed_kph'][i] = speed_kph

        return X
Esempio n. 4
0
class OTMWrapper:

	def __init__(self, configfile, port_num = 25333):

		self.configfile = configfile
		self.sim_output = None
		self.start_time = None
		self.duration = None

		self.conn = JavaConnect()
		if self.conn.pid is not None:
			self.otm = self.conn.gateway.get()
			self.otm.load(configfile,True,False)

	def __del__(self):
		if self.conn is not None:
			self.conn.close()

	def show_network(self,linewidth=1):
		
		fig, ax = plt.subplots()

		nodes = {}
		for node_id in self.otm.scenario().get_node_ids():
			node_info = self.otm.scenario().get_node_with_id(node_id)
			nodes[node_id] = {'x':node_info.getX(),'y':node_info.getY()}

		lines = []
		minX = float('Inf')
		maxX = -float('Inf')
		minY = float('Inf')
		maxY = -float('Inf')
		for link_id in self.otm.scenario().get_link_ids():
			link_info = self.otm.scenario().get_link_with_id(link_id)

			start_point = nodes[link_info.getStart_node_id()]
			end_point = nodes[link_info.getEnd_node_id()]

			p0 = (start_point['x'],start_point['y'])
			p1 = (end_point['x'],end_point['y'])
			lines.append([p0,p1])

			minX = min([minX,p0[0],p1[0]])
			maxX = max([maxX,p0[0],p1[0]])
			minY = min([minY,p0[1],p1[1]])
			maxY = max([maxY,p0[1],p1[1]])

		all_colors = [k for k,v in pltc.cnames.items()]
		colors = sample(all_colors, len(lines))
		lc = LineCollection(lines,colors=colors)
		lc.set_linewidths(linewidth)
		ax.add_collection(lc)

		dY = maxY - minY
		dX = maxX - minX

		if(dY>dX):
			ax.set_ylim((minY,maxY))
			c = (maxX+minX)/2
			ax.set_xlim((c-dY/2,c+dY/2))
		else:
			ax.set_xlim((minX,maxX))
			c = (maxY+minY)/2
			ax.set_ylim((c-dX/2,c+dX/2))

		plt.draw()

	# run a simulation
	def run_simple(self,start_time=0.,duration=3600.,output_dt=30.):
            
		self.start_time = float(start_time)
		self.duration = float(duration)

		self.otm.output().clear()
		link_ids = self.otm.scenario().get_link_ids()
		self.otm.output().request_links_flow(None,link_ids,float(output_dt))
		self.otm.output().request_links_veh(None,link_ids,float(output_dt))

		# run the simulation
		self.otm.run(self.start_time,self.duration)

	def initialize(self,start_time=0):
		self.otm.initialize(start_time)

	def advance(self,duration):
		self.otm.advance(duration)

	def get_state_trajectory(self):

		X = {'time':None,'link_ids':None,'vehs':None,'flows_vph':None,'speed_kph':None}
		output_data = self.otm.output().get_data()
		it = output_data.iterator()
		while(it.hasNext()):

			output = it.next()

			# collect common link ids
			if X['link_ids'] is None:
				link_list =list(output.get_link_ids())
				X['link_ids'] = np.array(link_list)
			else:
				if not np.array_equal(X['link_ids'],np.array(list(output.get_link_ids()))):
					raise ValueError('incompatible output requests')

			# collect common time vector
			if X['time'] is None:
				X['time'] = np.array(list(output.get_time()))
			else:
				if not np.array_equal( X['time'],np.array(list(output.get_time()))):
					raise ValueError('incompatible output requests')

		# initialize outputs
		num_time = len(X['time'])
		num_links = len(X['link_ids'])

		X['vehs'] = np.empty([num_links,num_time])
		X['flows_vph'] = np.empty([num_links,num_time])

		it = output_data.iterator()
		while(it.hasNext()):
			output = it.next()

			for i in range(len(link_list)):
				z = output.get_profile_for_linkid(link_list[i])
				classname = output.getClass().getSimpleName()
				if(classname=="LinkFlow"):
					X['flows_vph'][i,0:-1] = np.diff(np.array(list(z.get_values())))*3600.0/z.get_dt()
				if(classname=="LinkVehicles"):
					X['vehs'][i,:] = np.array(list(z.get_values()))

		X['speed_kph'] = np.empty([num_links,num_time])
		for i in range(len(link_list)):
			link_info = self.otm.scenario().get_link_with_id(link_list[i])
			if link_info.isIs_source():
				X['speed_kph'][i,:] = np.nan;
			else:
				ffspeed_kph = link_info.get_ffspeed_kph()
				link_length_km = link_info.getFull_length()/1000.0;

				with np.errstate(divide='ignore', invalid='ignore'):
					speed_kph = np.nan_to_num( link_length_km * np.divide( X['flows_vph'][i] , X['vehs'][i] ) );
				speed_kph[speed_kph>ffspeed_kph] = ffspeed_kph;
				X['speed_kph'][i] = speed_kph;

		return X