def train_Linear(x_list, gt_y_list, batch_size, lr, max_iter):
    """

    :param x_list:
    :param gt_y_list:
    :param batch_size: 全部的值
    :param lr: 学习率
    :param max_iter: 迭代次数,要更新的次数
    :return:
    """
    w, b = 0, 0
    num_samples = len(x_list)

    # plt.ion()
    # fig, ax = plt.subplots()
    # plt.rcParams['lines.markersize'] = 3
    for i in range(max_iter):
        # 随机抽取(batch_size)个样本
        batch_idxs = np.random.choice(num_samples, batch_size)
        batch_x = [x_list[j] for j in batch_idxs]
        batch_y = [gt_y_list[j] for j in batch_idxs]
        w, b = cal_step_gradient(batch_x, batch_y, w, b, lr)
        s1 = 'w:{}, b:{}'.format(w, b)
        s2 = 'loss is {}'.format(eval_loss(w, b, x_list, gt_y_list))
        log('s_1', s1, '\n', 's_2', s2)

        # ax.cla()
        # time.sleep(1)
    return w, b
def gen_sample_data_Logisitic(clas):
    """
    数据生成条件
    :clas: 类别数量
    :return:
    """
    # w边界
    w_s = [0] * 4
    w_e = [10, 10, -10, -10]
    # b边界
    b_s = [0] * 4
    b_e = [10] * 4

    # 数据规模
    num_pample = 50

    # x范围
    x_s = [0, 60, 0, 60]
    x_e = [40, 80, 40, 80]

    x_list = []
    y_list = []

    c = [0, 50]

    for i in range(clas):
        log('i', i)
        x, y = gen_sample_data(w_s[i], w_e[i], b_s[i], b_e[i], x_s[i], x_e[i],
                               num_pample, c[i])
        x_list += x
        y_list += y
        # log(x_list)
        # log(y_list)

    return x_list, y_list
Esempio n. 3
0
def logistic_regression(datax, label, num_steps, learning_rate):
    real_datax = np.mat(np.insert(datax, 0, 1, axis=1))
    log('real_datax', real_datax)
    real_label = np.mat(label).transpose()  #将一维数组转换为二维数组,并转置
    log('real_label', real_label)
    params = np.ones(
        (np.shape(real_datax)[1], 1))  #生成一个数据为1的,real_xdata行 1 列的二维数组。
    # log('params', params)
    plt.ion()  #起到多开窗口的作用
    fig, ax = plt.subplots()
    plt.rcParams['lines.markersize'] = 3
    for step in range(num_steps):
        scores = real_datax * params
        predictions = sigmoid(scores)
        params = params + learning_rate * real_datax.transpose() * (
            real_label - predictions)
        log('params', params)
        x1_min = np.min(datax[:, 0])
        x1_max = np.max(datax[:, 0])
        x2_min = np.min(datax[:, 1])
        x2_max = np.max(datax[:, 1])
        plt.xlim(x1_min, x1_max)
        plt.ylim(x2_min, x2_max)

        x_line = np.linspace(x1_min, x1_max, 1000)
        y_line = (-params[0, 0] - params[1, 0] * x_line) / params[2, 0]
        plt.plot(x_line, y_line)
        plt.title(str(step) + '--iterations', fontsize='xx-large')
        plt.scatter(real_xdata[:, 0], real_xdata[:, 1], c=label, alpha=.4)
        plt.pause(1)
        ax.cla()
    return params
Esempio n. 4
0
def eval_loss(w, b, x_list, gt_y_list):
    """
    cost function, 做一个Loss计算
    :param w: 线性回归的斜率,x的系数
    :param b: 与x轴的截距
    :param x_list: x的集合
    :param gt_y_list: 实际的y值集合
    gt : ground trues 实际值
    :return: 所有的gt_y和pred_y的方差和
    """
    avg_loss = 0
    for i in range(len(x_list)):
        pred_y = sigmoid(w, b, x_list[i])
        avg_loss += -gt_y_list[i] * np.log(pred_y) - (
            1 - gt_y_list[i]) * log(1 - pred_y)
    avg_loss /= len(gt_y_list)
    return avg_loss
Esempio n. 5
0
import numpy as np
import matplotlib.pyplot as plt

from out_put import log

np.random.seed(125)
sample_num = 1000

x1 = np.random.multivariate_normal([0, 1], [[1, 0.5], [0.5, 1]],
                                   sample_num)  #多元正太分布
log('x1', x1)
x2 = np.random.multivariate_normal([4, 7], [[1.7, 1.5], [1.5, 1.7]],
                                   sample_num)
log('x2', x2)

real_xdata = np.vstack((x1, x2)).astype(np.float32)  #x
log('real_xdata', real_xdata)
real_label = np.hstack((np.zeros(sample_num), np.ones(sample_num)))
log('real_label', real_label)

plt.figure(figsize=(10, 6))
plt.scatter(real_xdata[:, 0], real_xdata[:, 1], c=real_label, alpha=.4)
plt.show()
log('---------------------------------------------------------')


def sigmoid(scores):
    return 1 / (1 + np.exp(-scores))


def logistic_regression(datax, label, num_steps, learning_rate):
Esempio n. 6
0
def high_medianblur_2(lay):
    row, colomn = lay.shape
    # log('row', row, 'colomn', colomn)
    j = 1
    v = 0
    count = array()
    end_n = np.empty(shape=[0, colomn - 2], dtype=np.uint8)  #二维空数组创建
    for i in range(1, row - 1):
        middle_n = [0] * (colomn - 2)
        # log('row', i)
        #使用蛇形方式取值
        if j == 0:
            j += 1
        elif j == (colomn - 1):
            j -= 1
        while j > 0 and j < (colomn - 1):
            # log('colomn', j)
            #对第一个3*3矩阵取值
            if i == 1 and j == 1:
                i_i = i - 1
                j_j = j - 1
                for k in range(3):
                    for d in range(3):
                        s = lay[i_i + k][j_j + d]
                        count = count_add(s, count)
                j += 1
                v += 1
            # 第一行之后的后边缘窗口处理
            elif j == (colomn - 2) and (i % 2) == 0:
                j_j = j - 1
                for s in range(3):
                    count = count_minus(lay[i - 2][j_j + s], count)
                    count = count_add(lay[i + 1][j_j + s], count)
                j -= 1
            # 第一行之后的前边缘窗口处理
            elif j == 1 and (i % 2) != 0:
                j_j = j - 1
                for s in range(3):
                    count = count_minus(lay[i - 2][j_j + s], count)
                    count = count_add(lay[i + 1][j_j + s], count)
                j += 1
            # 偶数行窗口处理,窗口逆向向行进
            elif (i % 2) == 0:
                i_i = i - 1
                for s in range(3):
                    count = count_minus(lay[i_i + s][j + 2], count)
                    count = count_add(lay[i_i + s][j - 1], count)
                j -= 1
                v -= 1
            # 奇数行窗口处理,窗口正向行进
            else:
                i_i = i - 1
                for s in range(3):
                    count = count_minus(lay[i_i + s][j - 2], count)
                    count = count_add(lay[i_i + s][j + 1], count)
                j += 1
                v += 1
            #取数组中间值
            middle = median(count)
            # log('middle', middle)

            # 将中间值组成二维数组的行数组
            middle_n[v - 1] = middle
        # i = 340
        # log('middle_n', middle_n)

        # 将中间值的行数组填充入二维数组
        end_n = np.append(end_n, [middle_n], axis=0)
    log('end_n_hing_2', end_n)
    return end_n
def high_medianblur_1(lay):
    row, colomn = lay.shape
    # log('row', row, 'colomn', colomn)
    j = 0
    v = 0
    end_n = np.empty(shape=[0, colomn - 2], dtype=np.uint8)  #二维空数组建立
    for i in range(1, row - 1):
        # log('row', i)
        middle_n = [0] * (colomn - 2)

        #使用蛇形方式取值
        if j == 0:
            j += 1
        elif j == (colomn - 1):
            j -= 1
        while j > 0 and j < (colomn - 1):
            # log('colomn', j)
            #初始窗口遍历
            if i == 1 and j == 1:
                a = []
                i_i = i - 1
                j_j = j - 1
                for k in range(3):
                    for d in range(3):
                        s = lay[i_i + k][j_j + d]
                        a.append(s)
                        # log(a)
                j += 1
                v += 1
            #第一行之后的后边缘窗口处理
            elif j == (colomn - 2) and (i % 2) == 0:
                for s in range(6):
                    a[s] = a[s + 3]
                a[6] = lay[i + 1][j - 1]
                a[7] = lay[i + 1][j]
                a[8] = lay[i + 1][j + 1]
                j -= 1
            # 第一行之后的前边缘窗口处理
            elif j == 1 and (i % 2) != 0:
                for s in range(6):
                    a[s] = a[s + 3]
                a[6] = lay[i + 1][j - 1]
                a[7] = lay[i + 1][j]
                a[8] = lay[i + 1][j + 1]
                j += 1
            #偶数行窗口处理,窗口逆向向行进
            elif (i % 2) == 0:
                a[2] = a[1]
                a[5] = a[4]
                a[8] = a[7]
                a[1] = a[0]
                a[4] = a[3]
                a[7] = a[6]
                a[0] = lay[i - 1][j - 1]
                a[3] = lay[i][j - 1]
                a[6] = lay[i + 1][j - 1]
                j -= 1
                v -= 1
            #奇数行窗口处理,窗口正向行进
            else:
                a[0] = a[1]
                a[3] = a[4]
                a[6] = a[7]
                a[1] = a[2]
                a[4] = a[5]
                a[7] = a[8]
                a[2] = lay[i - 1][j + 1]
                a[5] = lay[i][j + 1]
                a[8] = lay[i + 1][j + 1]
                j += 1
                v += 1
            # log('a', a)
            # log('j', j, 'v', v)
            #取数组中间值
            middle = median(a)
            # log('middle', middle)
            #将中间值组成二维数组的行数组
            middle_n[v - 1] = middle
        # i = 340
        # log('middle_n', middle_n)

        #将中间值的行数组填充入二维数组
        end_n = np.append(end_n, [middle_n], axis=0)
    log('end_n_hing_1', end_n)
    return end_n