def test_entire_pipeline(): kernel = Scikit_SVM.getLinearKernel() clf = Scikit_SVM(kernel) validator = StratifiedCrossValidator(10,clf) cm = validator.run() norm_cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] output_util.plot_confusion_matrix(norm_cm,labels_by_frequency,title='Normalized Confusion Matrix')
def test_cm_plotting(): non_normalized_cm = np.loadtxt('../experiments/dataset1_all_C_0.2_chi2_0.1_cfsn_matrix.txt',np.float32) num_labels = non_normalized_cm.shape[0] labels = labels_by_frequency[:num_labels] cm_normalized = non_normalized_cm.astype('float') / non_normalized_cm.sum(axis=1)[:, np.newaxis] output_util.plot_confusion_matrix(cm_normalized,labels,title='Normalized Confusion Matrix')