Esempio n. 1
0
    def run(self, in_data: Instance) -> Solution:

        machines = in_data.machine_speeds
        machines2 = [[], [], [], [], []]
        for i in range(len(machines)):
            machines2[i] = [i, 0,
                            machines[i]]  #real machine index, time, delay
        sorted_machines = self.rearange_machines(machines2)

        tasks_weird = in_data.tasks
        tasks_unsorted = []
        for task_index, task in enumerate(tasks_weird):
            tasks_unsorted.append([task_index + 1, task.duration, task.ready])

        sorted_tasks = self.double_sort(
            tasks_unsorted)  #((real_task_index, p, r), ())
        tasks_to_machine_allocation, sorted_machines, F = self.algorytm(
            sorted_tasks, sorted_machines)

        n = len(tasks_weird)

        # print(tasks_to_machine_allocation)

        schedule = Schedule(n=n,
                            m=len(machines),
                            schedule=tasks_to_machine_allocation)

        return Solution(score=round(F / n, 6), schedule=schedule)
Esempio n. 2
0
    def run(self, in_data: Instance) -> Solution:
        current_time = 0.0
        total_flow = 0.0
        tasks = self.init_tasks(in_data.tasks)
        machines = self.init_machines(in_data.machine_speeds)

        available_tasks_left = len(tasks)

        while available_tasks_left > 0:
            available_machines = self.get_available_machines(machines, current_time)
            for machine in available_machines:
                chosen_task = self.select_task(machine, tasks)
                tasks[chosen_task.task_id - 1].mark_finished()
                total_flow += machine.assign_task(chosen_task)
                available_tasks_left -= 1
                if available_tasks_left == 0:
                    break

            current_time = machines[0].machine_time
            for i in range(1, len(machines)):
                if machines[i].machine_time < current_time:
                    current_time = machines[i].machine_time

        order = []
        for machine in machines:
            order.append(machine.schedule)

        schedule = Schedule(len(tasks), len(machines), order)

        return Solution(round(total_flow / in_data.no_tasks, 6), schedule)
Esempio n. 3
0
    def alg1(in_data: Instance) -> Solution:
        schedule = [[] for _ in range(in_data.no_machines)]

        tasks = pd.DataFrame(data=[[t.ready, t.duration]
                                   for t in in_data.tasks])
        # print(tasks)
        # in_data.tasks.sort(key=lambda x: x.ready)
        tasks = tasks.sort_values(by=[0, 1], ascending=[True, False])
        # tasks = tasks.sort_values(by=[1, 0], ascending=[True, False])

        # print(tasks)
        machines = dict()
        for inx, m in enumerate(in_data.machine_speeds):
            machines[inx] = m

        srt_mach = sorted(machines.items(), key=lambda it: it[1])
        # print(srt_mach)

        act_machine = 0
        for i, task in tasks.iterrows():
            schedule[srt_mach[act_machine][0]].append(int(task.name) + 1)
            act_machine += 1
            act_machine %= in_data.no_machines
        # print(schedule)

        result = Algorithm136811.calc_score(in_data, schedule)
        return Solution(
            result, Schedule(in_data.no_tasks, in_data.no_machines, schedule))
Esempio n. 4
0
    def run(self, in_data: Instance) -> Solution:
        score = 0
        n = in_data.no_tasks
        m = in_data.no_machines

        schedule =[[] for i in range(m)]
        machines = [i for i in zip(range(m), m*[0], in_data.machine_speeds)]
        tasks = [i for i in zip(range(1, n+1), in_data.tasks)]

        for task in sorted(tasks, key=lambda task: task[1].ready):
            task_id = task[0]
            ready = task[1].ready
            duration = task[1].duration

            machine = min(machines, key=lambda machine: machine[1] + duration * machine[2])
            machine_id = machine[0]
            time = machine[1]
            speed = machine[2]

            schedule[machine_id].append(task_id)
            C = max(ready+duration*speed, time+duration*speed)
            machines[machine_id] = (machine_id, C, speed)

            score += C - ready
        score /= n
        return Solution(score=score, schedule=Schedule(n, m, schedule))
Esempio n. 5
0
    def run(self, in_data: Instance) -> Solution:
        def find_best(task_checked):
            solutions = {}
            timer = [0] * in_data.no_machines
            for machine_num, machine in machines:
                timer[machine_num] = max(local_timers[machine_num], task_checked.ready)
                timer[machine_num] += task_checked.duration * machine
                solutions[machine_num] = timer[machine_num] - task.ready
            #choose best machine
            chosen_machine = min(solutions, key=solutions.get)
            #increment timer and solution on local chosen machine
            local_solutions[chosen_machine] += solutions[chosen_machine]
            local_timers[chosen_machine] = timer[chosen_machine]

            return chosen_machine

        sorted_tasks = sorted(enumerate(in_data.tasks, 1), key=lambda x: (x[1].ready,x[1].duration))
        machines = list(enumerate(in_data.machine_speeds))
        # split tasks into equal parts to machines
        local_solutions = [0.0] * in_data.no_machines
        local_timers = [0.0] * in_data.no_machines
        local_schedules = []
        [local_schedules.append([]) for i in range(5)]
        #for every task find where is minimum value and add this to schedule.
        for ind, task in sorted_tasks:
            #find best machine for this solution
            append_task_to = find_best(task)
            #append this tasks to chosen machine
            local_schedules[append_task_to].append(ind)


        global_solution = sum(local_solutions) / in_data.no_tasks
        return Solution(score=global_solution,
                        schedule=Schedule(n=in_data.no_tasks, m=in_data.no_machines, schedule=local_schedules))
Esempio n. 6
0
    def sort_available(self, instance: Instance, key):
        tasks = instance.tasks.copy()
        n = instance.no_tasks
        m = instance.no_machines
        times = [0] * m
        schedule = [[] for i in range(0, m)]

        while True:
            next_machine = self.get_next_machine(times,
                                                 instance.machine_speeds)
            time = times[next_machine]
            available = self.get_available(tasks, time)
            if len(available) == 0:
                ready_times = [
                    task.ready for task in tasks if task.ready >= time
                ]
                if len(ready_times) == 0:
                    break
                time = min(ready_times)
                for i in range(0, m):
                    times[i] = max(time, times[i])
                next_machine = self.get_next_machine(times,
                                                     instance.machine_speeds)
                available = self.get_available(tasks, time)
            available.sort(key=key)
            task = available[0]
            schedule[next_machine].append(task.no)
            speed = instance.machine_speeds[next_machine]
            times[next_machine] = max(times[next_machine],
                                      task.ready) + task.duration * speed
            tasks.remove(task)

        return Schedule(n, m, schedule)
Esempio n. 7
0
 def run(AjbFo, in_data: Instance):
     AjbFa = [Machine(AjbFy) for AjbFy in in_data.machine_speeds]
     AjbFv = sorted(enumerate(in_data.tasks),
                    key=lambda AjbFM: (AjbFM[1].ready, AjbFM[1].duration))
     for AjbFi, AjbFM in AjbFv:
         AjbFD = lmap(lambda machine: machine.finish_time(AjbFM), AjbFa)
         AjbFU = np.argmin(AjbFD).item()
         AjbFa[AjbFU].do_schedule(AjbFM, AjbFi + 1, AjbFD[AjbFU])
         AjbFe = AjbFu
         AjbFP = -1
         for i, machine in enumerate(AjbFa):
             if machine.time > AjbFM.ready and i != AjbFU:
                 AjbFx = machine.criterium_change_on_swap(AjbFM)
                 AjbFO = AjbFa[AjbFU].criterium_change_on_swap(
                     machine.schedule_tasks[-1])
                 AjbFg = AjbFx + AjbFO
                 if AjbFe > AjbFg and AjbFg < 0:
                     AjbFe = AjbFg
                     AjbFP = (i, AjbFx, AjbFO)
         if AjbFP != -1:
             AjbFE, AjbFn = AjbFa[AjbFP[0]].schedule_tasks[-1], AjbFa[
                 AjbFP[0]].schedule_ids[-1]
             AjbFa[AjbFP[0]].swap(AjbFP[1], AjbFa[AjbFU].schedule_tasks[-1],
                                  AjbFa[AjbFU].schedule_ids[-1])
             AjbFa[AjbFU].swap(AjbFP[2], AjbFE, AjbFn)
     AjbFt = [machine.schedule_ids for machine in AjbFa]
     AjbFQ = calc_score(in_data, AjbFt)
     return Solution(schedule=Schedule(schedule=AjbFt,
                                       m=in_data.no_machines,
                                       n=in_data.no_tasks),
                     score=AjbFQ)
Esempio n. 8
0
 def run(E, in_data):
     A = in_data
     B, C = read_instance(A)
     D = E.minimal_expected_loss_first(C, B)
     F = compute_loss(D, C, B)
     return Solution(score=F,
                     schedule=Schedule(n=A.no_tasks,
                                       m=A.no_machines,
                                       schedule=[[B + 1 for B in A]
                                                 for A in D]))
Esempio n. 9
0
def lxpDwtEkCfBQUiy(lxpDwtEkCfBQUiJ,lxpDwtEkCfBQUiq):
 lxpDwtEkCfBQUiG=0
 for lxpDwtEkCfBQUiW in lxpDwtEkCfBQUHs(lxpDwtEkCfBQUiJ.no_machines):
  lxpDwtEkCfBQUir=0
  for lxpDwtEkCfBQUiI in lxpDwtEkCfBQUiq[lxpDwtEkCfBQUiW]:
   lxpDwtEkCfBQUir+=lxpDwtEkCfBQUHo(lxpDwtEkCfBQUiJ.tasks[lxpDwtEkCfBQUiI-1].ready-lxpDwtEkCfBQUir,0)
   lxpDwtEkCfBQUir+=lxpDwtEkCfBQUiJ.machine_speeds[lxpDwtEkCfBQUiW]*lxpDwtEkCfBQUiJ.tasks[lxpDwtEkCfBQUiI-1].duration
   lxpDwtEkCfBQUiG+=lxpDwtEkCfBQUir-lxpDwtEkCfBQUiJ.tasks[lxpDwtEkCfBQUiI-1].ready
 lxpDwtEkCfBQUiG=lxpDwtEkCfBQUiG/lxpDwtEkCfBQUiJ.no_tasks
 return Solution(lxpDwtEkCfBQUiG,Schedule(lxpDwtEkCfBQUiJ.no_tasks,lxpDwtEkCfBQUiJ.no_machines,lxpDwtEkCfBQUiq))
Esempio n. 10
0
    def dummy_schedule(self, instance: Instance):
        tasks_per_machine = instance.no_tasks // instance.no_machines

        schedule = []
        task_num = 1
        for i in range(0, instance.no_machines - 1):
            tasks = range(task_num, task_num + tasks_per_machine)
            schedule.append(list(tasks))
            task_num += tasks_per_machine
        tasks = range(task_num, instance.no_tasks + 1)
        schedule.append(list(tasks))
        return Schedule(instance.no_tasks, instance.no_machines, schedule)
Esempio n. 11
0
    def run(self, in_data: Instance) -> Solution:
        n = in_data.no_tasks
        m = in_data.no_machines
        machine_speeds = sorted(in_data.machine_speeds)
        r = range(m)
        r = sorted(r, key=in_data.machine_speeds.__getitem__)
        schedule = [[] for _ in range(m)]
        ready_tasks = []
        done = [0 for _ in range(m)]
        tasks_by_readiness = [
            IndexedTask(task.duration, task.ready, index)
            for index, task in enumerate(in_data.tasks, 1)
        ]
        tasks_by_readiness = sorted(tasks_by_readiness, key=lambda x: x.ready)
        mean_speed = sum(machine_speeds) / m
        time = tasks_by_readiness[0].ready
        while len(tasks_by_readiness) > 0 or len(ready_tasks) != 0:
            while len(tasks_by_readiness
                      ) > 0 and tasks_by_readiness[0].ready <= time:
                ready_tasks.append(tasks_by_readiness.pop(0))

            task_finish = min(done)
            machine = 0
            for t in done:
                if t == task_finish:
                    break
                machine += 1
            if len(ready_tasks) == 0:
                continue
            best_index = 0
            reverse = -1 if machine_speeds[machine] < mean_speed else 1
            best_task_duration = 1e18
            for index, task in enumerate(ready_tasks):
                if reverse * task.duration < best_task_duration:
                    best_task_duration = reverse * task.duration
                    best_index = index
            schedule[machine].append(ready_tasks.pop(best_index).index)
            done[
                machine] = time + reverse * best_task_duration * machine_speeds[
                    machine]
            time = max(
                min(done), -1 if len(tasks_by_readiness) == 0 else
                tasks_by_readiness[0].ready)

        for i, c in zip(r, list(schedule)):
            schedule[i] = c
        schedule = Schedule(n, m, schedule)
        solution = Solution(0, schedule)
        return Solution(Evaluator132211().evaluate(in_data, solution).value,
                        schedule)
Esempio n. 12
0
    def sort_global(self, instance: Instance, key):
        n = instance.no_tasks
        m = instance.no_machines
        times = [0] * m
        schedule = [[] for i in range(0, m)]

        tasks = sorted(instance.tasks, key=key)
        for task in tasks:
            next_machine = self.get_next_machine(times,
                                                 instance.machine_speeds)
            schedule[next_machine].append(task.no)
            speed = instance.machine_speeds[next_machine]
            times[next_machine] = max(times[next_machine],
                                      task.ready) + speed * task.duration
        return Schedule(n, m, schedule)
Esempio n. 13
0
    def run(self, in_data: Instance) -> Solution:
        n = in_data.no_tasks
        m = in_data.no_machines
        tasks = [
            ScheduledTask(i + 1, t.ready, t.duration, 0)
            for i, t in enumerate(in_data.tasks)
        ]
        tasks.sort(key=lambda t: t.p)

        c_m_i = [0] * m
        ans = [[] for _ in range(m)]
        for i, task in enumerate(tasks):
            min_m = 0
            min_cost = 1e7
            tmp_last_competed = [0.0] * m
            for m_i, machine, speed in zip(range(m), ans,
                                           in_data.machine_speeds):
                if len(machine) == 0:
                    cost = task.p * speed
                    if cost < min_cost:
                        min_m = m_i
                        min_cost = cost
                        tmp_last_competed[m_i] = task.r + cost
                        continue
                tmp_last_competed[m_i] = max(c_m_i[m_i],
                                             task.r) + task.p * speed
                cost = tmp_last_competed[m_i] - task.r
                if cost < min_cost:
                    min_m = m_i
                    min_cost = cost
            ans[min_m].append(task.id)
            task.end = max(c_m_i[min_m],
                           task.r) + task.p * in_data.machine_speeds[min_m]
            c_m_i[min_m] = task.end

        obj = 0
        for num, machine in enumerate(ans):
            c = 0
            for idx in machine:
                task = in_data.tasks[idx - 1]
                c = max(c, task.ready) + (task.duration *
                                          in_data.machine_speeds[num])
                obj += c - task.ready
        obj = obj / n

        return Solution(obj, Schedule(n, m, ans))
Esempio n. 14
0
 def run(self, in_data: Instance) -> Solution:
     self.get_instance_data(in_data.machine_speeds, in_data.tasks)
     self.sort_lists()
     self.clock, self.flow_time = 0.0, 0.0
     task = self.assign_task()
     while task:
         machine = self.pick_machine()
         if machine != None:
             self.flow_time += machine.add_task(task)
         else:
             ready_machine = min(self.machines, key=lambda x: x.clock)
             self.clock = ready_machine.clock
             self.flow_time += ready_machine.add_task(task)
         task = self.assign_task()
     sequence = [machine.list_of_tasks for machine in self.machines]
     final_sequence = Schedule(len(self.tasks), len(self.machines),
                               sequence)
     mean_flow_time = round(self.flow_time / in_data.no_tasks, 6)
     return Solution(mean_flow_time, final_sequence)
Esempio n. 15
0
    def alg2(in_data: Instance) -> Solution:
        schedule = [[] for _ in range(in_data.no_machines)]

        tasks = pd.DataFrame(data=[[t.ready, t.duration]
                                   for t in in_data.tasks])
        # tasks = tasks.sort_values(by=[0, 1], ascending=[True, False])
        tasks = tasks.sort_values(by=[0], ascending=[True])

        machines = dict()
        for inx, m in enumerate(in_data.machine_speeds):
            machines[inx] = [m, 0]

        srt_mach = sorted(machines.items(), key=lambda it: it[1][0])
        # print(srt_mach)

        # sum_p = sum([t.duration for t in in_data.tasks])
        # sum_mach_pow = sum([1.0 / b for b in in_data.machine_speeds])
        # opt_end = sum_p / sum_mach_pow

        for i, task in tasks.iterrows():
            added = False
            for machine in range(5):
                if srt_mach[machine][1][1] <= task[0]:
                    schedule[srt_mach[machine][0]].append(int(task.name) + 1)
                    srt_mach[machine][1][1] = max(task[0], srt_mach[machine][1][1]) + \
                                              task[1] * in_data.machine_speeds[srt_mach[machine][0]]
                    added = True
                    break
            if not added:
                tmp = []
                for m in range(5):
                    tmp.append(
                        (m, max(srt_mach[m][1][1], task[0]) +
                         task[1] * in_data.machine_speeds[srt_mach[m][0]]))
                best = min(tmp, key=lambda it: it[1])
                schedule[srt_mach[best[0]][0]].append(int(task.name) + 1)
                srt_mach[best[0]][1][1] = best[1]

        result = Algorithm136811.calc_score(in_data, schedule)
        return Solution(
            result, Schedule(in_data.no_tasks, in_data.no_machines, schedule))
Esempio n. 16
0
    def run(self, cCLno: Instance) -> Solution:
        class MST(NamedTuple):
            cCLnI: cCLnV
            t: cCLnV
            index: cCLnQ

        cCLnz: cCLnV = 0
        cCLnP = []
        cCLnJ = [[] for _ in cCLni(cCLno.no_machines)]
        cCLnb = [MST(cCLnI, 0, i) for i, cCLnI in cCLnK(cCLno.machine_speeds)]
        cCLnN = cCLno.tasks
        cCLnN.sort(key=lambda task: task.ready)
        cCLnm = [[i, val] for i, val in cCLnK(cCLnN, start=1)]
        while cCLnv(cCLnP) < cCLno.no_tasks:
            cCLnu = [cCLnq for cCLnq in cCLnb if cCLnq.t <= cCLnz]
            cCLnE = cCLnR(
                takewhile(lambda task: task[cCLnG].ready <= cCLnz, cCLnm))
            if cCLnv(cCLnu) > 0 and cCLnv(cCLnE) > 0:
                cCLne(cCLnu, cCLnE, cCLnP, cCLnb, cCLnJ, cCLnm, cCLnz)
                cCLnz += 1
            elif cCLnv(cCLnu) == 0:
                cCLnz = cCLnr(cCLnF(cCLnb, key=lambda cCLnq: cCLnq.t).t, cCLnz)
            elif cCLnv(cCLnE) == 0:
                cCLnz = cCLnF(cCLnm,
                              key=lambda task: task[cCLnG].ready)[cCLnG].ready
            else:
                cCLnz += 1
        cCLnd = 0
        for cCLnx in cCLni(cCLno.no_machines):
            cCLnz = 0
            for cCLnO in cCLnJ[cCLnx]:
                cCLnz += cCLnr(cCLno.tasks[cCLnO - 1].ready - cCLnz, 0)
                cCLnz += cCLno.machine_speeds[cCLnx] * cCLno.tasks[cCLnO -
                                                                   1].duration
                cCLnd += cCLnz - cCLno.tasks[cCLnO - 1].ready
        cCLnd = cCLnd / cCLno.no_tasks
        cCLnJ = Schedule(cCLno.no_tasks, cCLno.no_machines, cCLnJ)
        return Solution(cCLnd, cCLnJ)
Esempio n. 17
0
def getSolution(in_data: Instance, schedule: List[List[int]]):
    schedule = Schedule(in_data.no_tasks, in_data.no_machines, schedule)
    tmpSolution = Solution(0, schedule)
    criterium = Criterium(in_data, tmpSolution)
    return Solution(criterium.getCriterium(), schedule)