'rrun') rrun_aucs.append(rrun_mean_auc) print('After this run with %s followed by %s (γ = %s), mean auc is %s' % (rrun_kpca, rrun_model, opt_gamma, rrun_mean_auc[0][0])) print("\n%.2f seconds elapsed so far\n" % (time.time() - StartTime)) print( '\n###################################################################\n' ) print('rrun_aucs:') print(rrun_aucs[0][0]) p2f.mpl_simplebar(rds_labels, rrun_aucs[0][0], 'Target outcome', 'Mean AUC', p2f.get_col_list('autumn', len(rds_labels)), output='save', path='%s%s_summarybars.png' % (filepath, nowtime)) p2f.js_bars(rds_labels, rrun_aucs[0][0], '%s%s_summarybars.js' % (plotpath, nowtime)) print("\n!!! SUCCESSFUL RUN !!!\n") #Calculate and display time taken or script to run print("\nTime taken for script to run is %.2f seconds\n" % (time.time() - StartTime))
X_imp = p2f.filt_imp(inp_df, 0.1) X, y = p2f.tsplit(X_imp) rrun_mean_auc, rrun_kpca, rrun_model = p2f.m_run5_3( X, y, opt_gamma, opt_kpca, opt_model, dataset, filepath, plotpath, 'rrun') rrun_aucs.append(rrun_mean_auc) print('After this run with %s followed by %s (γ = %s), mean auc is %s' % (rrun_kpca, rrun_model, opt_gamma, rrun_mean_auc[0][0])) print("\n%.2f seconds elapsed so far\n" % (time.time() - StartTime)) print( '\n###################################################################\n' ) print('rrun_aucs:') print(rrun_aucs[0][0]) p2f.mpl_simplebar(rds_labels, rrun_aucs[0][0], 'Target outcome', 'Mean AUC', p2f.get_col_list('autumn', len(rds_labels)), output='show') #Calculate and display time taken or script to run print("\nTime taken for script to run is %.2f seconds\n" % (time.time() - StartTime))