Esempio n. 1
0
 def plotCloudImage(self):
     """Generate some additional information and plots about the cloud image, if desired."""
     from pImagePlots import PImagePlots
     import pylab
     im = PImagePlots()
     im.setImage(self.cloudimage)
     im.showImage(copy=True)
     im.hanningFilter()
     im.calcAll()
     im.showPsd2d()
     im.showAcovf2d()
     im.showAcovf1d()
     im.showSf(linear=True)
     #pylab.show()
     return
Esempio n. 2
0
# Start here to invert from FFT (useI = False, and will get perfect reconstruction). 
im.invertFft(useI=True)

# Use im2 to recalculate 1d PSD/ACovF starting from the reconstructed image, without altering the original. 
im2 = PImagePlots()
im2.setImage(im.imageI.real, copy=True)
im2.calcAll(min_dr=1.0, min_npix=2)
im2.plotMore()

# Now start plotting things, in comparison. 
clims = im.showImage()
#print clims
im2.showImage(clims=clims)
im2.showImage()
im.showFft(clims=clims)
im2.showFft(clims=clims)
im.showPsd2d()
im2.showPsd2d()
im.showPhases()
im2.showPhases()
im.showAcovf2d()
im2.showAcovf2d(imag=False)
im.showPsd1d(comparison=im2)
im.showAcovf1d(comparison=im2)
im.showSf(linear=True, comparison=im2)

pylab.show()
exit()