def main():
    mac.acquire()
    san.analyze()
    man.analyze()
    mre.reporting()
    print(
        '========================= Pipeline is complete. You may find the results in the folder ./data/results and my Tweeter account!========================='
    )
def main(country):
    print('Starting pipe line')
    df_acq = m_acquisition.data_df()
    print('Cleaning retrieved data!')
    df_wrang= m_wrangling.wrangle(df_acq)
    print('Analysing data!')
    df_analysis=m_analysis.analyze(df_wrang,country)
Esempio n. 3
0
def main(args):
    data_base = mac.proyect_data(args.path)
    jobs = mwr.job_id(data_base)
    data_jobs = mwr.get_jobs(jobs)
    df_countries = mwr.get_info(args.url)
    rural_clean = mwr.rural_column(data_base)
    merged_data = mwr.merged_info(data_base, df_countries, data_jobs)
    grouped_rural = man.analyze(merged_data)
    filter_data = mwr.filter_country(grouped_rural, args.country)
def main(some_args):
    data = mac.acquire()
    filtered = mwr.wrangle(data, year)
    results = man.analyze(filtered)
    fig = mre.plotting_function(results, title, arguments)
    mre.save_viz(fig, title)
    print(
        '========================= Pipeline is complete. You may find the results in the folder ./data/results ========================='
    )
def main(path, country, unknown):
    print('Starting Pipeline...')
    df_with_dates_raw = mac.acquire(path)
    df_with_dates_clean = mwr.wrangle(df_with_dates_raw, country, unknown)
    df_analyze = man.analyze(df_with_dates_clean)
    mre.save_df(df_analyze, country, unknown)

    print(f'The results of the country -{country}- are: ')
    print(df_analyze)
    print('Finished Pipeline')
def main(some_args):
    print(some_args)
    print("Starting data analysis process!")

    #list_of_df = mac.tables_to_df(some_args.db_path)
    clean = mwr.clean_data()
    csv = man.analyze(clean)
    mre.export(csv, some_args.ruta)
    webbrowser.open_new_tab('http://127.0.0.1:8050/')
    mre.dash_report(clean)

    print("Process finished!")
def main(args):
    print('starting pipeline...\n---------------------')
    tables_from_db = m_acquisition.get_tables(args.path)
    jobs_api = m_acquisition.get_jobs(args.api, args.updt)
    country_codes_dic = m_acquisition.get_countries(args.url)
    final = m_wrangling.final_table(tables_from_db, jobs_api,
                                    country_codes_dic)
    analysis = m_analysis.analyze(final, args.country)
    print('\n', analysis)
    print(
        '\n========================= Pipeline is complete. You may find the results in the folder ./data/results ========================='
    )
def main(country, job):
    data = mac.acquire()
    relevant_data = mwr.transform_data(data)
    clean_data, countries_codes = mwr.country_name_import(relevant_data)
    select_job, key_uuid = mwr.job_data(clean_data, job)
    filtered_data = mwr.job_filtering(clean_data, select_job, key_uuid)
    filtered_data = man.country_filtering(filtered_data, country,
                                          countries_codes)
    result = man.analyze(filtered_data, job, clean_data)
    mre.visualizing_histogram(result['Age'], country, job)
    mre.reporting(result)
    print(
        '======= Pipeline is complete. You may find the results in the folder ./data/results ======='
    )
Esempio n. 9
0
def main(arguments):

    data = mac.acquire(arguments.path)
    filtered = mwr.wrangle(data, arguments.unemployed)
    results = man.analyze(filtered)
    reporting = mre.reporting(results, arguments.country)

    reporting.to_csv('./data/results/Results.csv')

    print(reporting)

    print(
        '\n\n======================|    Pipeline is complete. You may find the results in the folder ./data/results     |==============================\n\n'
    )
def main(country):
    print('Starting pipeline...')

    # Acquisition
    m_acquisition.acquisition()

    # Wrangling
    df = m_wrangling.wrangling()

    # Analysis
    final_data = m_analysis.analyze(df, country)

    # Reporting
    m_reporting.reporting(final_data, country)

    print('pipeline finished...')
Esempio n. 11
0
def main(arg1, arg2):
    data_personal_info = mac.acquire_personal_info(arg1)
    print('A dataframe with personal info was created')
    clean_gender = mwr.wrangle(data_personal_info)
    country_names = mac.fetch_country()
    print('A dataframe with country info was created')
    career_info = mac.acquire_career_info(arg1)
    print('A dataframe with career info was created')
    job_titles = mac.fetch_job_titles(career_info)
    print('Job titles successfully retrieved')
    country_info = mac.acquire_country_info(arg1)
    main_df = mwr.merge_dfs(country_info, career_info, clean_gender,
                            job_titles, country_names)
    print('Main dataframe retreived')
    final_table = man.analyze(main_df)
    print(
        'Final table with the results has been created in /data/results folder'
    )
    table_country = man.filter_country(arg2, final_table)
    table_country.to_csv(r'data/results/final_table.csv',
                         index=False,
                         header=True)
Esempio n. 12
0
def main(args):
    print('==== Starting Pipeline ====')
    ## Challenge 1
    # getting data
    data_raw = mac.get_data_from_sql()
    data_no_job = mac.get_country_name(data_raw)
    data = mac.get_normalized_job_title(data_no_job)
    # analizing data
    final_df = man.analyze(data, args.country)
    # saving csv
    locationcsv = [mre.save_csv(final_df, args.country)]

    ##Bonus 1 - poll info
    #getting data
    data_poll = mac.get_poll_info()
    # analizing data
    data_b1 = man.get_poll_resume(data_poll, args.country)
    # saving csv
    locationcsv.append(mre.save_csv(data_b1, f'Poll{args.country}'))

    ##Bonus 2 -
    # getting data
    data_skills = mac.get_skills(args.country)
    # analizing data
    data_skills_by_education = man.get_skills_by_education(data_skills)
    # saving csv
    locationcsv.append(
        mre.save_csv(data_skills_by_education, f'Skills{args.country}'))

    # sending email with attached reports
    mre.send_email(locationcsv)
    #uploading to website
    mre.upload_to_website(locationcsv)

    print(
        '==== Pipeline is complete. You may find the results in the folder ./data/results ===='
    )
def dash_report(df):
    df = man.analyze(df)
    app = dash.Dash(__name__)

    app.layout = html.Div([
        html.H1("Challenge 1", style={'text-align': 'center'}),
        html.Label('Job Title'),
        dcc.Dropdown(
            id='select_job',
            options=[{
                'label': elem,
                'value': elem
            } for elem in df['Job_title'].unique()],
            value=
            'geographic information systems data administrator gis data administrator'
        ),
        html.Br(),
        html.Label('Country'),
        dcc.Dropdown(id='select_country',
                     options=[{
                         'label': elem,
                         'value': elem
                     } for elem in df['Country'].unique()],
                     value='Spain'),
        html.Br(),
        html.Label('Age Group'),
        dcc.Dropdown(
            id='select_age_group',
            options=[{
                'label': elem,
                'value': elem
            } for elem in df['Age_group'].unique()],
            value='14_25',
        ),
        dcc.Graph(id='my_table', figure={})
    ])

    @app.callback(Output(
        component_id='my_table', component_property='figure'), [
            Input(component_id='select_job', component_property='value'),
            Input(component_id='select_country', component_property='value'),
            Input(component_id='select_age_group', component_property='value')
        ])
    def update_graph(job_slctd, country_slctd, age_slctd):
        dff = df.copy()
        dff = dff[(dff['Job_title'] == job_slctd)
                  & (dff['Country'] == country_slctd) &
                  (dff['Age_group'] == age_slctd)]

        fig = go.Figure(data=[
            go.Table(header=dict(
                values=list(dff.columns),
                fill_color='paleturquoise',
                align=['left', 'center'],
                height=40,
            ),
                     cells=dict(
                         values=[
                             dff.Country, dff.Age_group, dff.Job_title,
                             dff.Quantity, dff.Percentage
                         ],
                         fill_color='lavender',
                         align=['left', 'center'],
                         height=30,
                     ))
        ])
        fig.update_layout()

        return fig

    return app.run_server(debug=True, use_reloader=False)
Esempio n. 14
0
def main(arguments):
    rural = mac.acquire()
    rural_processed = mwr.wrangling(rural)
    rural_analysed = man.analyze(rural_processed, arguments.country)
    return rural_analysed
Esempio n. 15
0
def main(scrape, download, model):
    print('Starting Pipeline...')
    mac.acquire(scrape)
    mwr.wrangle(scrape, download)
    man.analyze(model)
    print('Finished Pipeline')