def test_get_node(self): g = DiGraph() for i in range(7): g.add_node(i) self.assertIsNone(g.get_node(8)) g.remove_node(5) self.assertIsNone(g.get_node(5)) list = [0, 1, 2, 3, 4, 6] sec_list = [] for key in g.get_all_v().values(): sec_list.append(g.get_node(key.id).id) self.assertListEqual(list, sec_list)
def load_from_json(self, file_name: str): if self is None: return False new_graph = DiGraph() try: with open(file_name, 'r') as fp: jsn = json.load(fp) for item in jsn['Nodes']: new_graph.add_node(item.get('id')) if item.get('pos') is not None: pos = item.get('pos') x, y, z = pos.split(',') x = float(x) y = float(y) z = float(z) new_graph.get_node(item.get('id')).pos = (x, y, z) for edge in jsn['Edges']: src = edge['src'] dest = edge['dest'] w = edge['w'] new_graph.add_edge(src, dest, w) self.g = new_graph except: print('cant open file') return False return True
class GraphAlgo: def __init__(self, d_graph=None): if d_graph is None: self.g = DiGraph() else: self.g = d_graph # method to return the DiGraph def get_graph(self): return self.g # method which crate a graph from a json format file and then init the graph in the AlgoGraph def load_from_json(self, file_name: str): if self is None: return False new_graph = DiGraph() try: with open(file_name, 'r') as fp: jsn = json.load(fp) for item in jsn['Nodes']: new_graph.add_node(item.get('id')) if item.get('pos') is not None: pos = item.get('pos') x, y, z = pos.split(',') x = float(x) y = float(y) z = float(z) new_graph.get_node(item.get('id')).pos = (x, y, z) for edge in jsn['Edges']: src = edge['src'] dest = edge['dest'] w = edge['w'] new_graph.add_edge(src, dest, w) self.g = new_graph except: print('cant open file') return False return True # method which saves the DiGraph in a json format def save_to_json(self, filename): if self is None or self.g is None: return False x = [] y = [] try: for value in self.g.get_all_v().values(): if value.pos is None: x.append({"id": value.id}) else: s, t, u = value.pos str_pos = str(s) + ", " + str(t) + ", " + "0.0" x.append({"id": value.id, "pos": str_pos}) for value in self.g.get_all_v().values(): for sec_key, sec_val in self.g.all_out_edges_of_node(value.id).items(): y.append({"src": value.id, "dest": sec_key, "w": sec_val}) w = {} w["Nodes"] = x w["Edges"] = y with open(filename, 'w') as json_file: json.dump(w, json_file) except: print('Eror saving file') return False return True # method to calculate the shortest path between to nodes using Dijikstra algorithm with a priorityqueue # that use a comparator of the value W of every node # the function retrun a tuple with the lentgh of the path and a list with all the nodes of the shortest path # the method also uses the value Tag of node class to check if a node was visited or not def shortest_path(self, id1: int, id2: int) -> (float, list): if self is None or self.g is None: return (float('inf'), []) if self.g.get_node(id1) is None or self.g.get_node(id2) is None: return (float('inf'), []) if id1 == id2: return (0, [id1]) for node in self.g.get_all_v().values(): node.w = -1 node.tag = 0 q = queue.PriorityQueue() dict_node = {} node = self.g.get_node(id1) node.w = 0 q.put(node) while not q.empty(): node = q.get() node.tag = 1 ni_list = self.g.all_out_edges_of_node(node.id) for ni_node in ni_list.keys(): if self.g.get_node(ni_node).tag == 0: sum = node.w + self.g.get_edge(node.id, ni_node) if sum < self.g.get_node(ni_node).w or self.g.get_node(ni_node).w == -1: self.g.get_node(ni_node).w = sum dict_node[ni_node] = node.id q.put(self.g.get_node(ni_node)) arr_list = [] if self.g.get_node(id2).w == -1: return (float('inf'), []) else: prev_node = id2 arr_list.append(prev_node) prev_node = dict_node.get(prev_node) while prev_node != id1: arr_list.append(prev_node) prev_node = dict_node.get(prev_node) arr_list.append(id1) arr_list.reverse() tuple_list = (self.g.get_node(id2).w, arr_list) return tuple_list # a method that recive a node id and return the biggest strongly component of the node # the method use the "naive algorithm" and run a DFS from the given node after that we call # the method reverse graph wich revers all the edges then we run again the DFS from tha same node # and the nodes which were visited in both of the DFS are the nodes of the scc def connected_component(self, id1: int): if self.g is None or self.g.get_node(id1) is None: return [] graph = GraphAlgo() self.DFS(self.g.get_node(id1)) # first DFS graph.g = self.reverse_graph(self.g) graph.DFS(graph.g.get_node(id1)) # second dfs over the reverse graph list = [] for node in graph.g.get_all_v().values(): if node.tag == 1 and self.g.get_node(node.id).tag == 1: # taking nodes wich were visited in both DFS list.append(node.id) return list # simple method that reverse the graph the method copy the same nodes but copy the opposite edges def reverse_graph(self, graph): graph2 = DiGraph() for node in graph.get_all_v().keys(): graph2.add_node(node) for ver in graph.get_all_v().values(): for edge in graph.all_out_edges_of_node(ver.id).keys(): graph2.add_edge(edge, ver.id, 0) return graph2 # The function to do DFS traversal. iterative DFS using a queue def DFS(self, v): for node in self.g.get_all_v().values(): node.tag = 0 q = queue.LifoQueue(maxsize=0) v.tag = 1 q.put_nowait(v) while not q.empty(): v = q.get() for neighbour in self.g.all_out_edges_of_node(v.id).keys(): if self.g.get_node(neighbour).tag == 0: self.g.get_node(neighbour).tag = 1 q.put(self.g.get_node(neighbour)) def connected_components(self): list = [] for ver in self.g.get_all_v().values(): ver.w = -1 for vertex in self.g.get_all_v().values(): if vertex.w == 1: continue list2 = self.connected_component(vertex.id) for i in list2: self.g.get_node(i).w = 1 list.append(list2) return list def plot_graph(self): x = [] y = [] n = [] max_x = -1000 min_x = 1000 max_y = -1000 min_y = 1000 for node in self.g.get_all_v().values(): n.append(node.id) if node.pos is None: node.pos = (int(random.randrange(0, 100, 3)), int(random.randrange(0, 100, 8)), 0) x.append(node.pos[0]) y.append(node.pos[1]) if node.pos[0] > max_x: max_x = node.pos[0] if node.pos[1] > max_y: max_y = node.pos[1] if node.pos[0] < min_x: min_x = node.pos[0] if node.pos[1] < min_y: min_y = node.pos[1] fig, ax = plt.subplots(facecolor=(0.5, 0.8, 0.8)) ax.scatter(x, y, 100, 'red') for ver in self.g.get_all_v().values(): # type Node for neighbour in self.g.all_out_edges_of_node(ver.id).keys(): from_xy = (ver.pos[0], ver.pos[1]) to_xy = (self.g.get_node(neighbour).pos[0], self.g.get_node(neighbour).pos[1]) con = ConnectionPatch(from_xy, to_xy, "data", "data", arrowstyle="-|>", shrinkA=5, shrinkB=5, mutation_scale=18, fc="orange") ax.add_artist(con) for i, txt in enumerate(n): ax.annotate(txt, (x[i], y[i] + 0.0002)) ax.text(0.5, 0.5, 'created by aviem and amiel', transform=ax.transAxes, fontsize=30, color='gray', alpha=0.5, ha='center', va='center', rotation='30') plt.axis([min_x - 0.001, max_x + 0.001, min_y - 0.001, max_y + 0.001]) plt.xlabel('X axis') plt.ylabel('Y axis') ax.set_facecolor('#eafff5') ax.set_title('Directed Weighted Graph') plt.show() def __str__(self): print(self.g) return ""