bkgtest = copy.deepcopy(backgroundlist) sumbkg = 0 sumdata = 0 for each in bkgtest + datatest: each.cut_parameter(cut_btagin_is, 1) # each.cut_parameter(cut_btagout_less, 0) if "data" not in each.alias: sumbkg += sum(each.weight) else: sumdata += len(each.weight) print("Making plots...") direct = "" name = "mbbcut-1tag" + correctionname bins = [200, 220, 240, 260, 290, 320, 350, 380, 410, 450, 550, 650, 750, 850, 1000, 1200, 1400, 1800] stackplot(bkgtest + datatest,b'ptfj1',bins,1000., xlabel=r"$p_{T}^{FJ}[GeV]$", filename=direct + "ptfj1" + name, print_height=True, title2=t2,auto_colour=False, limit_y = 0.5, upper_y=2.5, log_y=True, title3="2 lep. 1 btag merged", chi2=True) bins = [260, 300, 400, 500, 600, 700, 800, 1000, 1200, 1400, 1800, 2200] stackplot(bkgtest + datatest,b'mVH',bins,1000., xlabel=r"$m_{VH}[GeV]$", filename=direct + "mvh" + name, print_height=True, title2=t2,auto_colour=False, limit_y = 0.5, upper_y=2.5, log_y=True, title3="2 lep. 1 btag merged", chi2=True) datatest = copy.deepcopy(datalist) bkgtest = copy.deepcopy(backgroundlist) sumbkg = 0 sumdata = 0 for each in bkgtest + datatest: each.cut_parameter(cut_btagin_is, 1) each.cut_parameter(cut_btagout_less, 0) if "data" not in each.alias:
1850, 2000 ] bincheck(binning, bins) all_sample1 = [] for each in all_sample: #print(type(each)) if isinstance(each, str): continue all_sample1.append(each) stackplot(all_sample1, variable_name, bins, 1., xlabel=r"$m_{VH}[GeV]$", title3="2 lep.," + btag + " b-tag " + region, filename="output/cpp_make_plot_test/" + filename[0:-5], print_height=False, title2=t2, auto_colour=False, limit_y=0.6, upper_y=2.6, sys=True, log_y=True) ''' sample_list = {"Wl", "Wcl", "Wbl", "Wbb", "Wbc", "Wcc", "WZ", "WW", "Zcc", "Zcl", "Zbl", "Zbc", "Zl", "Zbb", "ZZ", "stopWt", "stops", "stopt", "ttbar", "ggZllH125", "qqZllH125", "stopWt_dilep"} colors = ['g', 'g', 'g', 'g', 'g', 'g', 'tab:orange','tab:orange', 'royalblue','royalblue','royalblue','royalblue','royalblue','royalblue','royalblue','yellow','yellow','yellow','yellow', 'yellow','yellow','yellow'] with open("mVHsr.txt","r") as f: for each_line in f: sample = json.loads(each_line) nominals = [] for each, color in zip(sample_list,colors): if each not in sample:
mysample = rescale(mysample) mysample = slopecorrection(mysample) title3 = "mBBcr " + str(2) + " btags" bins = [ 0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300 ] print(bins) chi2, nod = stackplot(mysample, b'pTV', bins, 1000., xlabel=r"$p_{TV}[GeV]$", title3=title3, filename="test1", print_height=True, title2=t2, auto_colour=False, limit_y=0.5, upper_y=2.0, log_y=True, printzpjets=True, chi2=True) bins = range(0, 2000, 30) chi2, nod = stackplot(mysample, b'mVH', bins, 1000., xlabel=r"$p_{TV}[GeV]$", title3=title3, filename="testmvh1",
] if dorebin: bins = range(0, 1400, 20) bins = autobin_withdatazlljet(all_sample_after_beforecorrection, bins, alias="Zlljet", variable=b"pTV") print(bins) chi2, nod = stackplot(all_sample_after, b'pTV', bins, 1000., xlabel=r"$p_{TV}[GeV]$", title3=title3, filename=direct + "pTV" + name, print_height=True, title2=t2, auto_colour=False, limit_y=0.5, upper_y=2.0, log_y=True, printzpjets=True, chi2=True) print("pTV", chi2, nod) bins = [ 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 1000, 1150, 1350, 1550, 1800 ] chi2, nod = stackplot(all_sample_after, b'mVH', bins,
bins = np.linspace(41,200,num=50) stackplot(all_sample,b'mLL',bins,1000., xlabel=r"$M_{Z}[GeV]$", title3="2 lep., > 2 b-tag", filename="31amZ", print_height=True, title2=t2,auto_colour=False, limit_y = 0.5, upper_y=2.6) ''' #bins = np.linspace(100,1200,50) #bins = range(0,40000,20000) #bins = range(0,100,1) bins = range(0,10000,40) all_sample_after = [each for each in all_sample] # stackplot(all_sample_after,b'ptL1',bins,1000., # xlabel=r"$pt_{l1}[GeV]$", title3="loose selection, 2 btags", filename="ptL1", print_height=True, # title2=t2,auto_colour=False, limit_y = 0.5, upper_y=2.0, log_y=True) #bins = [50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 1000, 1150, 1350, 1550, 1800] stackplot(all_sample_after,b'pTV',bins,1000., xlabel=r"$p_{TV}[GeV]$", title3="mBB 1 btags", filename="output/t_make_plot/" + "pTV-mbbcr", print_height=True, title2=t2,auto_colour=False, limit_y = 0.5, upper_y=2.0, log_y=True) # bins = range(0,1000,50) # stackplot(all_sample_after,b'pTB1',bins,1000., # xlabel=r"$pt_{b1}[GeV]$", title3="loose selection, 2 btags", filename="pTB1", print_height=True, # title2=t2,auto_colour=False, limit_y = 0.5, upper_y=2.0, log_y=True) # bins = range(5,80,3) # stackplot(all_sample_after,b'MET',bins,1000., # xlabel=r"$pt_{L2}[GeV]$", title3="muon same charge srcut, < 2 btag", filename="ptL2_3_test", print_height=True, # title2=t2,auto_colour=False, limit_y = 0.5, upper_y=3.0, log_y=False) # bins = np.linspace(0, 3.15, num=20) # stackplot(all_sample_after,b'delphi1',bins,1., # xlabel=r"$delphi1$", title3="l same charge srcut, < 3 btag",title4 = "PTl2 < 20 GeV" ,filename="delphi1l", print_height=True, # title2=t2,auto_colour=False, limit_y = 0.5, upper_y=3, log_y=False, blind = False) # stackplot(all_sample_after,b'delphi2',bins,1.,
def flow(new, old, ntag): t2 = r"$\mathit{\sqrt{s}=13\:TeV,139\:fb^{-1}}$" title3 = "mBBcr " + str(ntag) + " btags" bins = [ 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 1000, 1150, 1350, 1550, 1800 ] chi2, nod = stackplot(Zsplit(new), b'mVHres', bins, 1000., xlabel=r"$m_{VH}[GeV]$", title3=title3, filename="mVH-new" + str(ntag) + "tag", print_height=False, title2=t2, auto_colour=False, limit_y=0.5, upper_y=2.0, log_y=True) chi2, nod = stackplot(Zsplit(old), b'mVHres', bins, 1000., xlabel=r"$m_{VH}[GeV]$", title3=title3, filename="mVH-old" + str(ntag) + "tag", print_height=False, title2=t2, auto_colour=False, limit_y=0.5, upper_y=2.0, log_y=True) bins = np.array([2, 3, 4, 5, 6, 7, 8, 9]) - 0.001 chi2, nod = stackplot(Zsplit(new), b"nJets", bins, 1, xlabel=r"number of jets", title3=title3, filename="njet-new" + str(ntag) + "tag", print_height=False, title2=t2, auto_colour=False, limit_y=0.5, upper_y=2.0, log_y=True) chi2, nod = stackplot(Zsplit(old), b"nJets", bins, 1, xlabel=r"number of jets", title3=title3, filename="njet-old" + str(ntag) + "tag", print_height=False, title2=t2, auto_colour=False, limit_y=0.5, upper_y=2.0, log_y=True) bins = np.array([0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4.5]) - 0.001 chi2, nod = stackplot(Zsplit(new), b"dEtaBB", bins, 1, xlabel=r"$\Delta\eta_{BB}$", title3=title3, filename="etabb-new" + str(ntag) + "tag", print_height=False, title2=t2, auto_colour=False, limit_y=0.5, upper_y=2.0, log_y=True) chi2, nod = stackplot(Zsplit(old), b"dEtaBB", bins, 1, xlabel=r"$\Delta\eta_{BB}$", title3=title3, filename="etabb-old" + str(ntag) + "tag", print_height=False, title2=t2, auto_colour=False, limit_y=0.5, upper_y=2.0, log_y=True) bins = [150, 200, 250, 300, 350, 400, 500, 600, 800, 1800] chi2, nod = stackplot(Zsplit(new), b"ptH", bins, 1000., xlabel=r"$pT_{BB}[GeV]$", title3=title3, filename="ptH-new" + str(ntag) + "tag", print_height=False, title2=t2, auto_colour=False, limit_y=0.5, upper_y=2.0, log_y=True) chi2, nod = stackplot(Zsplit(old), b"ptH", bins, 1000., xlabel=r"$pT_{BB}[GeV]$", title3=title3, filename="ptH-old" + str(ntag) + "tag", print_height=False, title2=t2, auto_colour=False, limit_y=0.5, upper_y=2.0, log_y=True) data = copy.deepcopy(old) eventpop(data, "Zlljet") for each in data: if each.alias != "data": each.weight *= -1 new = eventkepp(new, "Zlljet") setcolour(new, "r") old = eventkepp(old, "Zlljet") setcolour(old, "b") setcolour(data, "k") bins = [ 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000, 1500, 1800 ] histplot_withsub([new, old, data], b'mVHres', bins, labels=["Sherpa v2.2.10", "Sherpa v2.2.1", "data"], scales=1000., removenorm=None, filename="mVH" + str(ntag) + "tag", central="data", title3=title3, title2=t2, do_errorbar=True) histplot_withsub([new, old, data], b'mVHres', bins, labels=["Sherpa v2.2.10", "Sherpa v2.2.1", "data"], scales=1000., removenorm="data", filename="mVH" + str(ntag) + "tag_density", central="data", title3=title3, title2=t2, do_errorbar=True) bins = [150, 200, 250, 300, 350, 400, 500, 600, 800, 1800] histplot_withsub([new, old, data], b"ptH", bins, labels=["Sherpa v2.2.10", "Sherpa v2.2.1", "data"], scales=1000., xlabel=r"$pT_{BB}[GeV]$", removenorm=None, filename="ptbb" + str(ntag) + "tag", central="data", title3=title3, title2=t2, do_errorbar=True) histplot_withsub([new, old, data], b"ptH", bins, labels=["Sherpa v2.2.10", "Sherpa v2.2.1", "data"], scales=1000., xlabel=r"$pT_{BB}[GeV]$", removenorm="data", filename="ptbb" + str(ntag) + "tag_density", central="data", title3=title3, title2=t2, do_errorbar=True) bins = [150, 200, 250, 300, 350, 400, 500, 600, 800, 1800] histplot_withsub([new, old, data], b"pTV", bins, labels=["Sherpa v2.2.10", "Sherpa v2.2.1", "data"], scales=1000., xlabel=r"$pT_{V}[GeV]$", removenorm=None, filename="ptV" + str(ntag) + "tag", central="data", title3=title3, title2=t2, do_errorbar=True) histplot_withsub([new, old, data], b"pTV", bins, labels=["Sherpa v2.2.10", "Sherpa v2.2.1", "data"], scales=1000., xlabel=r"$pT_{V}[GeV]$", removenorm="data", filename="ptV" + str(ntag) + "tag_density", central="data", title3=title3, title2=t2, do_errorbar=True) bins = np.array([2, 3, 4, 5, 6, 7, 8, 9]) - 0.001 histplot_withsub([new, old, data], b"nJets", bins, labels=["Sherpa v2.2.10", "Sherpa v2.2.1", "data"], scales=1, xlabel=r"number of jets", removenorm=None, filename="njet" + str(ntag) + "tag", central="data", title3=title3, title2=t2, do_errorbar=True) histplot_withsub([new, old, data], b"nJets", bins, labels=["Sherpa v2.2.10", "Sherpa v2.2.1", "data"], scales=1, xlabel=r"number of jets", removenorm="data", filename="njet" + str(ntag) + "tag_density", central="data", title3=title3, title2=t2, do_errorbar=True) bins = np.array([0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4.5]) - 0.001 histplot_withsub([new, old, data], b"dEtaBB", bins, labels=["Sherpa v2.2.10", "Sherpa v2.2.1", "data"], scales=1, xlabel=r"$\Delta\eta_{BB}$", removenorm=None, filename="eta" + str(ntag) + "tag", central="data", title3=title3, title2=t2, do_errorbar=True) histplot_withsub([new, old, data], b"dEtaBB", bins, labels=["Sherpa v2.2.10", "Sherpa v2.2.1", "data"], scales=1, xlabel=r"$\Delta\eta_{BB}$", removenorm="data", filename="eta" + str(ntag) + "tag_density", central="data", title3=title3, title2=t2, do_errorbar=True)
# title2=t2,auto_colour=False, limit_y = 0.5, upper_y=2.0, log_y=True, title3="2 lep.",) # bins = [10, 50, 100, 150, 250, 350, 450, 550, 650, 750] # stackplot(bkgtest + datatest,b'ptTrkJetsinFJ2',bins,1000., # xlabel=r"$pT_{Trkj2}[GeV]$", filename=direct + "ptTrkJetsinFJ2" + name, print_height=True, # title2=t2,auto_colour=False, limit_y = 0.5, upper_y=2.5, log_y=True, title3="2 lep.",) datatest = copy.deepcopy(datalist) bkgtest = copy.deepcopy(backgroundlist) sumbkg = 0 sumdata = 0 for each in bkgtest + datatest: # each.cut_parameter(cut_btagout_less, 0) if "data" not in each.alias: sumbkg += sum(each.weight) else: sumdata += len(each.weight) print(sumbkg) print(sumdata) print("Making plots...") direct = "" name = "mbbcut-3ptag" bins = range(0,700,30) stackplot(bkgtest + datatest,b'ptHcorr',bins,1000., xlabel=r"$pT_{BB}[GeV]$", filename=direct + "ptBB" + name, print_height=True, title2=t2,auto_colour=False, limit_y = 0.5, upper_y=2.5, log_y=True, title3="2 lep. 3+ btag resolved",)
if "data" not in each.alias: sumbkg += sum(each.weight) else: sumdata += len(each.weight) print(sumbkg) print(sumdata) print("Making plots...") direct = "" name = "mbbcut-1tag" bins = [200, 220, 240, 260, 290, 320, 350, 380, 410, 450, 550, 650, 750, 850, 1000, 1200, 1400, 1800] stackplot(bkgtest + datatest,b'ptfj1',bins,1000., xlabel=r"$pT_{FJ}[GeV]$", filename=direct + "ptfj1" + name, print_height=True, title2=t2,auto_colour=False, limit_y = 0.5, upper_y=2.5, log_y=True, title3="2 lep. 1 btag merged",) datatest = copy.deepcopy(datalist) bkgtest = copy.deepcopy(backgroundlist) sumbkg = 0 sumdata = 0 for each in bkgtest + datatest: each.cut_parameter(cut_btagin_is, 2) # each.cut_parameter(cut_btagout_less, 0) if "data" not in each.alias: sumbkg += sum(each.weight) else: sumdata += len(each.weight) print(sumbkg) print(sumdata)
backgroundlist.append(content) test = get_signalid("ggA") out = splitesamples(signallist[0], test) new_signallist = [] for each in out: new_signallist.append(each[1]) for each in out: print(each[0], sum(each[1].weight)) each[1].alias = "ggA" + str(each[0]) + " GeV" saveevents_pandas([each[1]], str(each[0])+".csv") saveevents_pandas(backgroundlist, "background.csv") # if datalist: # saveevents(datalist,"data") # if signallist: # saveevents(signallist,"signal") # if backgroundlist: # saveevents(backgroundlist,"backgrounds") # make stack plot. delete if not needed. print("Making plots...") title3="mbbcr" direct = "" name = "SR-" bins = [50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 1000, 1150, 1350, 1550, 1800] stackplot(backgroundlist+datalist,b'mVHres',bins,1000., xlabel=r"$m_{VH}[GeV]$", title3=title3, filename=direct + "mVH" + name, print_height=True, title2=t2, auto_colour=False, limit_y=0.5, upper_y=2.0, log_y=True)