Esempio n. 1
0
    def main_train(self):
        with tf.Graph().as_default():
            with tf.Session() as sess:
                img_data = facenet.get_dataset(self.datadir)
                path, label = facenet.get_image_paths_and_labels(img_data)
                print('Classes: %d' % len(img_data))
                print('Images: %d' % len(path))

                facenet.load_model(self.modeldir)
                images_placeholder = tf.get_default_graph().get_tensor_by_name(
                    "input:0")
                embeddings = tf.get_default_graph().get_tensor_by_name(
                    "embeddings:0")
                phase_train_placeholder = tf.get_default_graph(
                ).get_tensor_by_name("phase_train:0")
                embedding_size = embeddings.get_shape()[1]

                print('Extracting features of images for model')
                batch_size = 1000
                image_size = 160
                nrof_images = len(path)
                nrof_batches_per_epoch = int(
                    math.ceil(1.0 * nrof_images / batch_size))
                emb_array = np.zeros((nrof_images, embedding_size))
                for i in range(nrof_batches_per_epoch):
                    start_index = i * batch_size
                    end_index = min((i + 1) * batch_size, nrof_images)
                    paths_batch = path[start_index:end_index]
                    images = facenet.load_data(paths_batch, False, False,
                                               image_size)
                    feed_dict = {
                        images_placeholder: images,
                        phase_train_placeholder: False
                    }
                    emb_array[start_index:end_index, :] = sess.run(
                        embeddings, feed_dict=feed_dict)

                classifier_file_name = os.path.expanduser(
                    self.classifier_filename)

                # Training Started
                print('Training Started')
                model = SVC(kernel='linear', probability=True)
                model.fit(emb_array, label)

                class_names = [cls.name.replace('_', ' ') for cls in img_data]

                # Saving model
                with open(classifier_file_name, 'wb') as outfile:
                    pickle.dump((model, class_names), outfile)
                return classifier_file_name
Esempio n. 2
0
    def collect_data(self):
        output_dir = os.path.expanduser(self.output_datadir)
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

        dataset = facenet.get_dataset(self.input_datadir)
        with tf.Graph().as_default():
            gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5)
            sess = tf.Session(config=tf.ConfigProto(
                gpu_options=gpu_options, log_device_placement=False))
            with sess.as_default():
                pnet, rnet, onet = detect_face.create_mtcnn(sess, '')

        minsize = 20  # minimum size of face
        threshold = [0.6, 0.7, 0.7]  # three steps's threshold
        factor = 0.709  # scale factor
        margin = 44
        image_size = 182

        # Add a random key to the filename to allow alignment using multiple processes
        random_key = np.random.randint(0, high=99999)
        bounding_boxes_filename = os.path.join(
            output_dir, 'bounding_boxes_%05d.txt' % random_key)

        with open(bounding_boxes_filename, "w") as text_file:
            nrof_images_total = 0
            nrof_successfully_aligned = 0
            for cls in dataset:
                output_class_dir = os.path.join(output_dir, cls.name)
                if not os.path.exists(output_class_dir):
                    os.makedirs(output_class_dir)
                for image_path in cls.image_paths:
                    nrof_images_total += 1
                    filename = os.path.splitext(
                        os.path.split(image_path)[1])[0]
                    output_filename = os.path.join(output_class_dir,
                                                   filename + '.png')
                    print("Image: %s" % image_path)
                    if not os.path.exists(output_filename):
                        try:
                            img = misc.imread(image_path)
                        except (IOError, ValueError, IndexError) as e:
                            errorMessage = '{}: {}'.format(image_path, e)
                            print(errorMessage)
                        else:
                            if img.ndim < 2:
                                print('Unable to align "%s"' % image_path)
                                text_file.write('%s\n' % (output_filename))
                                continue
                            if img.ndim == 2:
                                img = facenet.to_rgb(img)
                                print('to_rgb data dimension: ', img.ndim)
                            img = img[:, :, 0:3]

                            bounding_boxes, _ = detect_face.detect_face(
                                img, minsize, pnet, rnet, onet, threshold,
                                factor)
                            nrof_faces = bounding_boxes.shape[0]
                            print('No of Detected Face: %d' % nrof_faces)
                            if nrof_faces > 0:
                                det = bounding_boxes[:, 0:4]
                                img_size = np.asarray(img.shape)[0:2]
                                if nrof_faces > 1:
                                    bounding_box_size = (
                                        det[:, 2] - det[:, 0]) * (det[:, 3] -
                                                                  det[:, 1])
                                    img_center = img_size / 2
                                    offsets = np.vstack([
                                        (det[:, 0] + det[:, 2]) / 2 -
                                        img_center[1],
                                        (det[:, 1] + det[:, 3]) / 2 -
                                        img_center[0]
                                    ])
                                    offset_dist_squared = np.sum(
                                        np.power(offsets, 2.0), 0)
                                    index = np.argmax(
                                        bounding_box_size -
                                        offset_dist_squared * 2.0
                                    )  # some extra weight on the centering
                                    det = det[index, :]
                                det = np.squeeze(det)
                                bb_temp = np.zeros(4, dtype=np.int32)

                                bb_temp[0] = det[0]
                                bb_temp[1] = det[1]
                                bb_temp[2] = det[2]
                                bb_temp[3] = det[3]

                                cropped_temp = img[bb_temp[1]:bb_temp[3],
                                                   bb_temp[0]:bb_temp[2], :]
                                scaled_temp = misc.imresize(
                                    cropped_temp, (image_size, image_size),
                                    interp='bilinear')

                                nrof_successfully_aligned += 1
                                misc.imsave(output_filename, scaled_temp)
                                text_file.write(
                                    '%s %d %d %d %d\n' %
                                    (output_filename, bb_temp[0], bb_temp[1],
                                     bb_temp[2], bb_temp[3]))
                            else:
                                print('Unable to align "%s"' % image_path)
                                text_file.write('%s\n' % (output_filename))

        return (nrof_images_total, nrof_successfully_aligned)
Esempio n. 3
0
def main(args):
    sleep(random.random())
    output_dir = os.path.expanduser(args.output_dir)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    # Store some git revision info in a text file in the log directory
    src_path, _ = os.path.split(os.path.realpath(__file__))
    facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv))
    dataset = facenet.get_dataset(args.input_dir)

    print('Creating networks and loading parameters')

    with tf.Graph().as_default():
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                log_device_placement=False))
        with sess.as_default():
            pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None)

    minsize = 20  # minimum size of face
    threshold = [0.6, 0.7, 0.7]  # three steps's threshold
    factor = 0.709  # scale factor

    # Add a random key to the filename to allow alignment using multiple processes
    random_key = np.random.randint(0, high=99999)
    bounding_boxes_filename = os.path.join(
        output_dir, 'bounding_boxes_%05d.txt' % random_key)

    with open(bounding_boxes_filename, "w") as text_file:
        nrof_images_total = 0
        nrof_successfully_aligned = 0
        if args.random_order:
            random.shuffle(dataset)
        for cls in dataset:
            output_class_dir = os.path.join(output_dir, cls.name)
            if not os.path.exists(output_class_dir):
                os.makedirs(output_class_dir)
                if args.random_order:
                    random.shuffle(cls.image_paths)
            for image_path in cls.image_paths:
                nrof_images_total += 1
                filename = os.path.splitext(os.path.split(image_path)[1])[0]
                output_filename = os.path.join(output_class_dir,
                                               filename + '.png')
                print(image_path)
                if not os.path.exists(output_filename):
                    try:
                        img = misc.imread(image_path)
                    except (IOError, ValueError, IndexError) as e:
                        errorMessage = '{}: {}'.format(image_path, e)
                        print(errorMessage)
                    else:
                        if img.ndim < 2:
                            print('Unable to align "%s"' % image_path)
                            text_file.write('%s\n' % (output_filename))
                            continue
                        if img.ndim == 2:
                            img = facenet.to_rgb(img)
                        img = img[:, :, 0:3]

                        bounding_boxes, _ = align.detect_face.detect_face(
                            img, minsize, pnet, rnet, onet, threshold, factor)
                        nrof_faces = bounding_boxes.shape[0]
                        if nrof_faces > 0:
                            det = bounding_boxes[:, 0:4]
                            det_arr = []
                            img_size = np.asarray(img.shape)[0:2]
                            if nrof_faces > 1:
                                if args.detect_multiple_faces:
                                    for i in range(nrof_faces):
                                        det_arr.append(np.squeeze(det[i]))
                                else:
                                    bounding_box_size = (
                                        det[:, 2] - det[:, 0]) * (det[:, 3] -
                                                                  det[:, 1])
                                    img_center = img_size / 2
                                    offsets = np.vstack([
                                        (det[:, 0] + det[:, 2]) / 2 -
                                        img_center[1],
                                        (det[:, 1] + det[:, 3]) / 2 -
                                        img_center[0]
                                    ])
                                    offset_dist_squared = np.sum(
                                        np.power(offsets, 2.0), 0)
                                    index = np.argmax(
                                        bounding_box_size -
                                        offset_dist_squared * 2.0
                                    )  # some extra weight on the centering
                                    det_arr.append(det[index, :])
                            else:
                                det_arr.append(np.squeeze(det))

                            for i, det in enumerate(det_arr):
                                det = np.squeeze(det)
                                bb = np.zeros(4, dtype=np.int32)
                                bb[0] = np.maximum(det[0] - args.margin / 2, 0)
                                bb[1] = np.maximum(det[1] - args.margin / 2, 0)
                                bb[2] = np.minimum(det[2] + args.margin / 2,
                                                   img_size[1])
                                bb[3] = np.minimum(det[3] + args.margin / 2,
                                                   img_size[0])
                                cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
                                scaled = misc.imresize(
                                    cropped,
                                    (args.image_size, args.image_size),
                                    interp='bilinear')
                                scaled = facenet.prewhiten(scaled)
                                nrof_successfully_aligned += 1
                                filename_base, file_extension = os.path.splitext(
                                    output_filename)
                                if args.detect_multiple_faces:
                                    output_filename_n = "{}_{}{}".format(
                                        filename_base, i, file_extension)
                                else:
                                    output_filename_n = "{}{}".format(
                                        filename_base, file_extension)
                                misc.imsave(output_filename_n, scaled)
                                text_file.write('%s %d %d %d %d\n' %
                                                (output_filename_n, bb[0],
                                                 bb[1], bb[2], bb[3]))
                        else:
                            print('Unable to align "%s"' % image_path)
                            text_file.write('%s\n' % (output_filename))

    print('Total number of images: %d' % nrof_images_total)
    print('Number of successfully aligned images: %d' %
          nrof_successfully_aligned)
Esempio n. 4
0
    def main_train(self):
        with tf.Graph().as_default():
            with tf.Session() as sess:
                img_data = facenet.get_dataset(self.datadir)
                path, label = facenet.get_image_paths_and_labels(img_data)
                print("label")
                print(label)
                print('Classes: %d' % len(img_data))
                print('Images: %d' % len(path))

                facenet.load_model(self.modeldir)
                images_placeholder = tf.get_default_graph().get_tensor_by_name(
                    "input:0")
                embeddings = tf.get_default_graph().get_tensor_by_name(
                    "embeddings:0")
                phase_train_placeholder = tf.get_default_graph(
                ).get_tensor_by_name("phase_train:0")
                embedding_size = embeddings.get_shape()[1]

                print('Extracting features of images for model')
                batch_size = 10000
                image_size = 160
                nrof_images = len(path)
                nrof_batches_per_epoch = int(
                    math.ceil(1.0 * nrof_images / batch_size))
                emb_array = np.zeros((nrof_images, embedding_size))
                #print(nrof_batches_per_epoch)
                #for i in range(nrof_batches_per_epoch):
                start_index = 0 * batch_size
                end_index = min((0 + 1) * batch_size, nrof_images)
                paths_batch = path[start_index:end_index]
                images = facenet.load_data(paths_batch, False, False,
                                           image_size)
                feed_dict = {
                    images_placeholder: images,
                    phase_train_placeholder: False
                }
                emb_array[start_index:end_index, :] = sess.run(
                    embeddings, feed_dict=feed_dict)
                print("emb_array[0]")
                print(emb_array[0])
                class_names = [cls.name.replace('_', ' ') for cls in img_data]
                classifier_file_name = os.path.expanduser(
                    self.classifier_filename)
                print('emb_array')
                print(emb_array)
                X_embedded = TSNE(n_components=2).fit_transform(emb_array)
                X_embedded -= X_embedded.min(axis=0)
                X_embedded /= X_embedded.max(axis=0)
                print("X_embedded")
                print(X_embedded)

                #for i in range(0, nrof_images-1):
                #    plt.plot(X_embedded[i, 0], X_embedded[i, 1],'bo')
                plt.legend(bbox_to_anchor=(1, 1))
                plt.show()
                out_dim = round(math.sqrt(nrof_images))
                out_res = 160
                to_plot = np.square(out_dim)
                grid = np.dstack(
                    np.meshgrid(np.linspace(0, 1, out_dim),
                                np.linspace(0, 1, out_dim))).reshape(-1, 2)
                cost_matrix = cdist(grid, X_embedded,
                                    "sqeuclidean").astype(np.float32)
                cost_matrix = cost_matrix * (100000 / cost_matrix.max())
                print(cost_matrix)
                #rids, cids = solve_dense(costs)
                #print(rids)
                print("zaczalem to robic")
                #row_ind, col_ind = linear_sum_assignment(cost_matrix)
                row_asses, col_asses, _ = lapjv(cost_matrix)
                #print("To cos")
                #print (col_asses)
                print("teraz to!")
                #print (row_ind)
                #print (col_ind)
                #for r,c in zip(row_ind, col_asses):
                #    print(r,c) # Row/column pairings
                grid_jv = grid[col_asses]
                out = np.ones((out_dim * out_res, out_dim * out_res, 3))
                print(grid_jv)

                for pos, img in zip(grid_jv, images[0:to_plot]):
                    h_range = int(np.floor(pos[0] * (out_dim - 1) * out_res))
                    w_range = int(np.floor(pos[1] * (out_dim - 1) * out_res))
                    out[h_range:h_range + out_res,
                        w_range:w_range + out_res] = image.img_to_array(img)
                print(out)
                im = image.array_to_img(out)
                im.save("obrazekV2.jpg", quality=100)
    def main_train(self):
        with tf.Graph().as_default():
            with tf.Session() as sess:
                img_data = facenet.get_dataset(self.datadir)
                path, label = facenet.get_image_paths_and_labels(img_data)
                print("label")
                print(label)
                print('Classes: %d' % len(img_data))
                print('Images: %d' % len(path))

                facenet.load_model(self.modeldir)
                images_placeholder = tf.get_default_graph().get_tensor_by_name(
                    "input:0")
                embeddings = tf.get_default_graph().get_tensor_by_name(
                    "embeddings:0")
                phase_train_placeholder = tf.get_default_graph(
                ).get_tensor_by_name("phase_train:0")
                embedding_size = embeddings.get_shape()[1]

                print('Extracting features of images for model')
                batch_size = 1000
                image_size = 160
                nrof_images = len(path)
                nrof_batches_per_epoch = int(
                    math.ceil(1.0 * nrof_images / batch_size))
                emb_array = np.zeros((nrof_images, embedding_size))
                print(nrof_batches_per_epoch)
                for i in range(nrof_batches_per_epoch):
                    start_index = i * batch_size
                    end_index = min((i + 1) * batch_size, nrof_images)
                    paths_batch = path[start_index:end_index]
                    images = facenet.load_data(paths_batch, False, False,
                                               image_size)
                    feed_dict = {
                        images_placeholder: images,
                        phase_train_placeholder: False
                    }
                    emb_array[start_index:end_index, :] = sess.run(
                        embeddings, feed_dict=feed_dict)

                class_names = [cls.name.replace('_', ' ') for cls in img_data]
                classifier_file_name = os.path.expanduser(
                    self.classifier_filename)
                print('emb_array')
                print(emb_array)
                X_embedded = TSNE(n_components=2).fit_transform(emb_array)
                print('X_embedded')
                print(X_embedded)
                faces_group = np.zeros((nrof_images, embedding_size))
                for i in range(0, nrof_images - 1):
                    print("i: ")
                    print(i)
                    j = label[i]
                    print("j: ")
                    print(j)
                    faces_group[j].append(X_embedded[i])
                    #plt.plot(X_embedded[i, 0], X_embedded[i, 1], label=name)#label=name)
                    #plt.scatter(X_embedded[i, 0], X_embedded[i, 1], label=name)
                for i in enumerate(set(faces_group)):
                    name = class_names[i]
                    plt.scatter(faces_group[i, 0],
                                faces_group[i, 1],
                                label=name)
                plt.legend(bbox_to_anchor=(1, 1))
                #plt.axis([-50, 50, -50, 50])
                plt.show()
                #time.sleep(5)
                #plt.imshow()
                # Training Started
                print('Training Started')
                model = SVC(kernel='linear', probability=True)
                model.fit(emb_array, label)

                print(class_names)
                # Saving model
                with open(classifier_file_name, 'wb') as outfile:
                    pickle.dump((model, class_names), outfile)
                return classifier_file_name
Esempio n. 6
0
import numpy as np
import tensorflow as tf
import time
from sklearn.svm import SVC
from packages import facenet
from scipy.spatial.distance import cdist
from scipy.optimize import linear_sum_assignment
from tensorflow.python.keras.preprocessing import image
from lapjv import lapjv

datadir = "align_img"
modeldir = "model"
with tf.Session() as sess:

    #tf.Session() as sess
    img_data = facenet.get_dataset(datadir)
    path, label = facenet.get_image_paths_and_labels(img_data)
    print("label")
    print(label)
    print('Classes: %d' % len(img_data))
    print('Images: %d' % len(path))

    facenet.load_model(modeldir)
    images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
    embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
    phase_train_placeholder = tf.get_default_graph().get_tensor_by_name(
        "phase_train:0")
    embedding_size = embeddings.get_shape()[1]
    print('Extracting features of images for model')
    batch_size = 10000
    image_size = 160
Esempio n. 7
0
    def main_train(self):
        with tf.Graph().as_default():
            gpu_options = tf.GPUOptions(allow_growth=True)
            with tf.Session(config=tf.ConfigProto(
                    gpu_options=gpu_options,
                    log_device_placement=False)).as_default() as sess:
                img_data = facenet.get_dataset(self.datadir)
                path, label = facenet.get_image_paths_and_labels(img_data)
                print('Classes: %d' % len(img_data))
                print('Images: %d' % len(path))

                facenet.load_model(self.modeldir)
                images_placeholder = tf.get_default_graph().get_tensor_by_name(
                    "input:0")
                embeddings = tf.get_default_graph().get_tensor_by_name(
                    "embeddings:0")
                phase_train_placeholder = tf.get_default_graph(
                ).get_tensor_by_name("phase_train:0")
                embedding_size = embeddings.get_shape()[1]

                print('Extracting features of images for model')
                batch_size = 100  #batch size 100
                image_size = 160
                nrof_images = len(path)
                nrof_batches_per_epoch = int(
                    math.ceil(1.0 * nrof_images / batch_size))
                emb_array = np.zeros((nrof_images, embedding_size))
                for i in range(nrof_batches_per_epoch):
                    start_index = i * batch_size
                    end_index = min((i + 1) * batch_size, nrof_images)
                    paths_batch = path[start_index:end_index]
                    images = facenet.load_data(paths_batch, False, False,
                                               image_size)
                    feed_dict = {
                        images_placeholder: images,
                        phase_train_placeholder: False
                    }
                    emb_array[start_index:end_index, :] = sess.run(
                        embeddings, feed_dict=feed_dict)

                classifier_file_name = os.path.expanduser(
                    self.classifier_filename)
                score_path = os.path.expanduser(self.score_path)

                # Training Started
                print('Training Started')
                #parameters tuning
                param_grid = {
                    'C': [1, 10, 100, 1000],
                    'gamma': [1, 0.1, 0.001, 0.0001],
                    'kernel': ['linear', 'rbf']
                }
                grid = GridSearchCV(SVC(), param_grid, refit=True, verbose=2)
                grid.fit(emb_array, label)
                best_param = grid.best_params_
                print('Best Parameters: ', best_param)

                print('Train Using Best Parameters...')
                model = SVC(C=best_param['C'],
                            gamma=best_param['gamma'],
                            kernel=best_param['kernel'],
                            probability=True)
                model.fit(emb_array, label)
                score = model.score(emb_array, label)
                print('Model Accuracy:', score)
                #Saving acc
                with open(score_path, 'w') as out_score:
                    out_score.write('Accuracy: {}\n '.format(score))

                class_names = [cls.name.replace('_', ' ') for cls in img_data]
                # Saving model
                with open(classifier_file_name, 'wb') as outfile:
                    pickle.dump((model, class_names), outfile)
                return classifier_file_name