Esempio n. 1
0
 def test_immutability_n_atoms(self):
     s = Slice(0, 10)
     with self.assertRaises(AttributeError):
         s.n_atoms = 3
Esempio n. 2
0
 def test_immutability_as_slice(self):
     s = Slice(0, 10)
     with self.assertRaises(AttributeError):
         s.as_slice = slice(2, 10)
Esempio n. 3
0
 def test_check_hi_atom_sanity(self):
     with self.assertRaises(ValueError):
         # Check for slice which goes backwards
         Slice(5, 4)
Esempio n. 4
0
 def test_immutability_hi_atom(self):
     s = Slice(0, 10)
     with self.assertRaises(AttributeError):
         s.hi_atom = 3
Esempio n. 5
0
 def test_check_lo_atom_sanity(self):
     # Check for value sanity
     with self.assertRaises(ValueError):
         # Check for negative atom
         Slice(-1, 10)
    def test_write_synaptic_matrix_and_master_population_table(self):
        MockSimulator.setup()
        # Add an sdram so max SDRAM is high enough
        SDRAM(10000)

        # UGLY but the mock transceiver NEED generate_on_machine to be False
        AbstractGenerateConnectorOnMachine.generate_on_machine = self.say_false
        default_config_paths = os.path.join(
            os.path.dirname(abstract_spinnaker_common.__file__),
            AbstractSpiNNakerCommon.CONFIG_FILE_NAME)

        config = conf_loader.load_config(
            AbstractSpiNNakerCommon.CONFIG_FILE_NAME, default_config_paths)
        config.set("Simulation", "one_to_one_connection_dtcm_max_bytes", 40)

        machine_time_step = 1000

        pre_app_vertex = SimpleApplicationVertex(10)
        pre_vertex_slice = Slice(0, 9)
        pre_vertex = pre_app_vertex.create_machine_vertex(
            pre_vertex_slice, None)
        post_app_vertex = SimpleApplicationVertex(10)
        post_vertex_slice = Slice(0, 9)
        post_vertex = post_app_vertex.create_machine_vertex(
            post_vertex_slice, None)
        post_slice_index = 0

        one_to_one_connector_1 = OneToOneConnector(None)
        direct_synapse_information_1 = SynapseInformation(
            one_to_one_connector_1, pre_app_vertex, post_app_vertex, False,
            False, None, SynapseDynamicsStatic(), 0, 1.5, 1.0)
        one_to_one_connector_1.set_projection_information(
            machine_time_step, direct_synapse_information_1)
        one_to_one_connector_2 = OneToOneConnector(None)
        direct_synapse_information_2 = SynapseInformation(
            one_to_one_connector_2, pre_app_vertex, post_app_vertex, False,
            False, None, SynapseDynamicsStatic(), 1, 2.5, 2.0)
        one_to_one_connector_2.set_projection_information(
            machine_time_step, direct_synapse_information_2)
        all_to_all_connector = AllToAllConnector(None)
        all_to_all_synapse_information = SynapseInformation(
            all_to_all_connector, pre_app_vertex, post_app_vertex, False,
            False, None, SynapseDynamicsStatic(), 0, 4.5, 4.0)
        all_to_all_connector.set_projection_information(
            machine_time_step, all_to_all_synapse_information)

        app_edge = ProjectionApplicationEdge(
            pre_app_vertex, post_app_vertex, direct_synapse_information_1)
        app_edge.add_synapse_information(direct_synapse_information_2)
        app_edge.add_synapse_information(all_to_all_synapse_information)
        machine_edge = app_edge.create_machine_edge(
            pre_vertex, post_vertex, label=None)
        partition_name = "TestPartition"

        graph = MachineGraph("Test")
        graph.add_vertex(pre_vertex)
        graph.add_vertex(post_vertex)
        graph.add_edge(machine_edge, partition_name)

        weight_scales = [4096.0, 4096.0]

        key = 0
        routing_info = RoutingInfo()
        routing_info.add_partition_info(PartitionRoutingInfo(
            [BaseKeyAndMask(key, 0xFFFFFFF0)],
            graph.get_outgoing_edge_partition_starting_at_vertex(
                pre_vertex, partition_name)))

        temp_spec = tempfile.mktemp()
        spec_writer = FileDataWriter(temp_spec)
        spec = DataSpecificationGenerator(spec_writer, None)
        master_pop_sz = 1000
        all_syn_block_sz = 2000
        master_pop_region = 0
        synapse_region = 1
        direct_region = 2
        spec.reserve_memory_region(master_pop_region, master_pop_sz)
        spec.reserve_memory_region(synapse_region, all_syn_block_sz)

        synaptic_manager = SynapticManager(
            n_synapse_types=2, ring_buffer_sigma=5.0, drop_late_spikes=True,
            spikes_per_second=100.0, config=config)
        # Poke in our testing region IDs
        synaptic_manager._pop_table_region = master_pop_region
        synaptic_manager._synaptic_matrix_region = synapse_region
        synaptic_manager._direct_matrix_region = direct_region

        synaptic_manager._write_synaptic_matrix_and_master_population_table(
            spec, [post_vertex_slice], post_slice_index, post_vertex,
            post_vertex_slice, all_syn_block_sz, weight_scales,
            routing_info, graph, machine_time_step)
        spec.end_specification()
        spec_writer.close()

        spec_reader = FileDataReader(temp_spec)
        executor = DataSpecificationExecutor(
            spec_reader, master_pop_sz + all_syn_block_sz)
        executor.execute()

        master_pop_table = executor.get_region(0)
        synaptic_matrix = executor.get_region(1)
        direct_matrix = executor.get_region(2)

        all_data = bytearray()
        all_data.extend(master_pop_table.region_data[
            :master_pop_table.max_write_pointer])
        all_data.extend(synaptic_matrix.region_data[
            :synaptic_matrix.max_write_pointer])
        all_data.extend(direct_matrix.region_data[
            :direct_matrix.max_write_pointer])
        master_pop_table_address = 0
        synaptic_matrix_address = master_pop_table.max_write_pointer
        direct_synapses_address = (
            synaptic_matrix_address + synaptic_matrix.max_write_pointer)
        direct_synapses_address += 4
        indirect_synapses_address = synaptic_matrix_address
        placement = Placement(None, 0, 0, 1)
        transceiver = MockTransceiverRawData(all_data)

        # Get the master population table details
        items = synaptic_manager._extract_synaptic_matrix_data_location(
            key, master_pop_table_address, transceiver, placement)

        # The first entry should be direct, but the rest should be indirect;
        # the second is potentially direct, but has been restricted by the
        # restriction on the size of the direct matrix
        assert len(items) == 3
        assert items[0][2]
        assert not items[1][2]
        assert not items[2][2]

        data_1, row_len_1 = synaptic_manager._retrieve_synaptic_block(
            txrx=transceiver, placement=placement,
            master_pop_table_address=master_pop_table_address,
            indirect_synapses_address=indirect_synapses_address,
            direct_synapses_address=direct_synapses_address, key=key,
            n_rows=pre_vertex_slice.n_atoms, index=0,
            using_monitors=False)
        connections_1 = synaptic_manager._read_synapses(
            direct_synapse_information_1, pre_vertex_slice, post_vertex_slice,
            row_len_1, 0, weight_scales, data_1, None, machine_time_step)

        # The first matrix is a 1-1 matrix, so row length is 1
        assert row_len_1 == 1

        # Check that all the connections have the right weight and delay
        assert len(connections_1) == post_vertex_slice.n_atoms
        assert all([conn["weight"] == 1.5 for conn in connections_1])
        assert all([conn["delay"] == 1.0 for conn in connections_1])

        data_2, row_len_2 = synaptic_manager._retrieve_synaptic_block(
            txrx=transceiver, placement=placement,
            master_pop_table_address=master_pop_table_address,
            indirect_synapses_address=indirect_synapses_address,
            direct_synapses_address=direct_synapses_address, key=key,
            n_rows=pre_vertex_slice.n_atoms, index=1,
            using_monitors=False)
        connections_2 = synaptic_manager._read_synapses(
            direct_synapse_information_2, pre_vertex_slice, post_vertex_slice,
            row_len_2, 0, weight_scales, data_2, None, machine_time_step)

        # The second matrix is a 1-1 matrix, so row length is 1
        assert row_len_2 == 1

        # Check that all the connections have the right weight and delay
        assert len(connections_2) == post_vertex_slice.n_atoms
        assert all([conn["weight"] == 2.5 for conn in connections_2])
        assert all([conn["delay"] == 2.0 for conn in connections_2])

        data_3, row_len_3 = synaptic_manager._retrieve_synaptic_block(
            txrx=transceiver, placement=placement,
            master_pop_table_address=master_pop_table_address,
            indirect_synapses_address=indirect_synapses_address,
            direct_synapses_address=direct_synapses_address, key=key,
            n_rows=pre_vertex_slice.n_atoms, index=2,
            using_monitors=False)
        connections_3 = synaptic_manager._read_synapses(
            all_to_all_synapse_information, pre_vertex_slice,
            post_vertex_slice, row_len_3, 0, weight_scales, data_3, None,
            machine_time_step)

        # The third matrix is an all-to-all matrix, so length is n_atoms
        assert row_len_3 == post_vertex_slice.n_atoms

        # Check that all the connections have the right weight and delay
        assert len(connections_3) == \
            post_vertex_slice.n_atoms * pre_vertex_slice.n_atoms
        assert all([conn["weight"] == 4.5 for conn in connections_3])
        assert all([conn["delay"] == 4.0 for conn in connections_3])
Esempio n. 7
0
 def test_create_slice_valid(self):
     """
     test creating a empty slice
     """
     Slice(0, 1)
Esempio n. 8
0
class MachineVertex(AbstractVertex, metaclass=AbstractBase):
    """ A machine graph vertex.
    """

    __slots__ = ["_app_vertex", "_index", "_vertex_slice"]
    _DEFAULT_SLICE = Slice(0, 0)

    def __init__(self,
                 label=None,
                 constraints=None,
                 app_vertex=None,
                 vertex_slice=None):
        """
        :param label: The optional name of the vertex
        :type label: str or None
        :param iterable(AbstractConstraint) constraints:
            The optional initial constraints of the vertex
        :type constraints: iterable(AbstractConstraint)  or None
        :param app_vertex:
            The application vertex that caused this machine vertex to be
            created. If None, there is no such application vertex.
        :type app_vertex: ApplicationVertex or None
        :param vertex_slice:
            The slice of the application vertex that this machine vertex
            implements.
        :type vertex_slice: Slice or None
        :raise PacmanInvalidParameterException:
            If one of the constraints is not valid
        :raises PacmanValueError: If the slice of the machine_vertex is too big
        :raise AttributeError:
            If a not None app_vertex is not an ApplicationVertex
        """
        if label is None:
            label = str(type(self))
        super().__init__(label, constraints)
        self._added_to_graph = False
        self._app_vertex = app_vertex
        self._index = None
        if vertex_slice is not None:
            self._vertex_slice = vertex_slice
        else:
            self._vertex_slice = self._DEFAULT_SLICE

    @property
    def app_vertex(self):
        """ The application vertex that caused this machine vertex to be
            created. If None, there is no such application vertex.

        :rtype: ApplicationVertex or None
        """
        return self._app_vertex

    @property
    def vertex_slice(self):
        """ The slice of the application vertex that this machine vertex
            implements.

        :rtype: Slice
        """
        return self._vertex_slice

    def get_n_keys_for_partition(self, _partition):
        """ Get the number of keys required by the given partition of edges.

        :param ~pacman.model.graphs.OutgoingEdgePartition _partition:
            An partition that comes out of this vertex
        :return: The number of keys required
        :rtype: int
        """
        return self._vertex_slice.n_atoms

    @property
    def index(self):
        """ The index into the collection of machine vertices for an
            application vertex.

        :rtype: int
        """
        return self._index if self._index is not None else 0

    @index.setter
    def index(self, value):
        """ The index into the collection of machine vertices for an
            application vertex.
        """
        self._index = value

    def __str__(self):
        _l = self.label
        return self.__repr__() if _l is None else _l

    def __repr__(self):
        if self.constraints:
            return "MachineVertex(label={}, constraints={})".format(
                self.label, self.constraints)
        return "MachineVertex(label={})".format(self.label)

    @abstractproperty
    def resources_required(self):
        """ The resources required by the vertex
Esempio n. 9
0
    def setUp(self):
        #######################################################################
        # Setting up vertices, edges and graph                                #
        #######################################################################
        self.vert1 = SimpleTestVertex(100,
                                      "New AbstractConstrainedTestVertex 1")
        self.vert2 = SimpleTestVertex(5, "New AbstractConstrainedTestVertex 2")
        self.vert3 = SimpleTestVertex(3, "New AbstractConstrainedTestVertex 3")
        self.edge1 = ApplicationEdge(self.vert1, self.vert2, "First edge")
        self.edge2 = ApplicationEdge(self.vert2, self.vert1, "Second edge")
        self.edge3 = ApplicationEdge(self.vert1, self.vert3, "Third edge")
        self.verts = [self.vert1, self.vert2, self.vert3]
        self.edges = [self.edge1, self.edge2, self.edge3]
        self.graph = ApplicationGraph("Graph", self.verts, self.edges)

        #######################################################################
        # Setting up machine                                                  #
        #######################################################################
        flops = 1000
        (_, _, n, _, _, s) = range(6)

        processors = list()
        for i in range(18):
            processors.append(Processor(i, flops))

        _sdram = SDRAM(128 * (2**20))

        ip = "192.168.240.253"
        chips = list()
        for x in range(10):
            for y in range(10):
                links = list()

                links.append(Link(x, y, 0, (x + 1) % 10, y, n, n))
                links.append(Link(x, y, 1, (x + 1) % 10, (y + 1) % 10, s, s))
                links.append(Link(x, y, 2, x, (y + 1) % 10, n, n))
                links.append(Link(x, y, 3, (x - 1) % 10, y, s, s))
                links.append(Link(x, y, 4, (x - 1) % 10, (y - 1) % 10, n, n))
                links.append(Link(x, y, 5, x, (y - 1) % 10, s, s))

                r = Router(links, False, 100, 1024)
                chips.append(Chip(x, y, processors, r, _sdram, 0, 0, ip))

        self.machine = Machine(chips)
        #######################################################################
        # Setting up graph and graph_mapper                                   #
        #######################################################################
        self.vertices = list()
        self.vertex1 = SimpleMachineVertex(
            0, 1, self.vert1.get_resources_used_by_atoms(Slice(0, 1)),
            "First vertex")
        self.vertex2 = SimpleMachineVertex(
            1, 5, get_resources_used_by_atoms(1, 5, []), "Second vertex")
        self.vertex3 = SimpleMachineVertex(
            5, 10, get_resources_used_by_atoms(5, 10, []), "Third vertex")
        self.vertex4 = SimpleMachineVertex(
            10, 100, get_resources_used_by_atoms(10, 100, []), "Fourth vertex")
        self.vertices.append(self.vertex1)
        self.vertices.append(self.vertex2)
        self.vertices.append(self.vertex3)
        self.vertices.append(self.vertex4)
        self.edges = list()
        self.graph = MachineGraph(self.vertices, self.edges)
        self.graph_mapper = GraphMapper()
        self.graph_mapper.add_vertices(self.vertices)