Esempio n. 1
0
    def test_program_clone_with_parameter(self):
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            d = layers.data(name='x', shape=[784], dtype='float32')
            hidden = layers.fc(input=d, size=100)
            layers.fc(input=hidden, size=100)

        new_program = main_program.clone()
        self.assertNotEqual(0, len(new_program.blocks[0].all_parameters()))
Esempio n. 2
0
    def test_program_clone_with_parameter(self):
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            d = layers.data(name='x', shape=[784], dtype='float32')
            hidden = layers.fc(input=d, size=100)
            layers.fc(input=hidden, size=100)

        new_program = main_program.clone()
        self.assertNotEqual(0, len(new_program.blocks[0].all_parameters()))
Esempio n. 3
0
    def test_program_clone(self):
        prog = Program()

        x = prog.global_block().create_var(
            name='X', shape=[1000, 784], dtype='float32')

        y = prog.global_block().create_var(
            name='Y', shape=[784, 100], dtype='float32')
        out = prog.global_block().create_var(name='Out', dtype='float32')
        prog.global_block().append_op(
            type="mul", inputs={'X': [x],
                                'Y': [y]}, outputs={'Out': [out]})

        # FIXME(yuyang18): We manual compare the output string, since the order
        # of variable could be changed.
        print(prog)
        print(prog.clone())
Esempio n. 4
0
    def test_program_clone(self):
        prog = Program()

        x = prog.global_block().create_var(name='X',
                                           shape=[1000, 784],
                                           dtype='float32')

        y = prog.global_block().create_var(name='Y',
                                           shape=[784, 100],
                                           dtype='float32')
        out = prog.global_block().create_var(name='Out', dtype='float32')
        prog.global_block().append_op(type="mul",
                                      inputs={
                                          'X': [x],
                                          'Y': [y]
                                      },
                                      outputs={'Out': [out]})

        # FIXME(yuyang18): We manual compare the output string, since the order
        # of variable could be changed.
        print(prog)
        print(prog.clone())
Esempio n. 5
0
    def test_fit_line_inference_model(self):
        MODEL_DIR = "./tmp/inference_model"
        UNI_MODEL_DIR = "./tmp/inference_model1"

        init_program = Program()
        program = Program()

        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(cost)

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)

        place = core.CPUPlace()
        exe = executor.Executor(place)

        exe.run(init_program, feed={}, fetch_list=[])

        for i in six.moves.xrange(100):
            tensor_x = np.array([[1, 1], [1, 2], [3, 4],
                                 [5, 2]]).astype("float32")
            tensor_y = np.array([[-2], [-3], [-7], [-7]]).astype("float32")

            exe.run(program,
                    feed={
                        'x': tensor_x,
                        'y': tensor_y
                    },
                    fetch_list=[avg_cost])

        # Separated model and unified model
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
        save_inference_model(UNI_MODEL_DIR, ["x", "y"], [avg_cost], exe,
                             program, 'model', 'params')
        main_program = program.clone()._prune_with_input(
            feeded_var_names=["x", "y"], targets=[avg_cost])
        params_str = save_persistables(exe, None, main_program, None)

        expected = exe.run(program,
                           feed={
                               'x': tensor_x,
                               'y': tensor_y
                           },
                           fetch_list=[avg_cost])[0]

        six.moves.reload_module(executor)  # reload to build a new scope

        model_0 = InferModel(load_inference_model(MODEL_DIR, exe))
        with open(os.path.join(UNI_MODEL_DIR, 'model'), "rb") as f:
            model_str = f.read()
        model_1 = InferModel(
            load_inference_model(None, exe, model_str, params_str))

        for model in [model_0, model_1]:
            outs = exe.run(model.program,
                           feed={
                               model.feed_var_names[0]: tensor_x,
                               model.feed_var_names[1]: tensor_y
                           },
                           fetch_list=model.fetch_vars)
            actual = outs[0]

            self.assertEqual(model.feed_var_names, ["x", "y"])
            self.assertEqual(len(model.fetch_vars), 1)
            print("fetch %s" % str(model.fetch_vars[0]))
            self.assertEqual(expected, actual)

        self.assertRaises(ValueError, fluid.io.load_inference_model, None, exe,
                          model_str, None)
class GraphWrapper(object):
    """
    It is a wrapper of paddle.fluid.framework.IrGraph with some special functions
    for paddle slim framework.

    Args:
        program(framework.Program): A program with 
        in_nodes(dict): A dict to indicate the input nodes of the graph.
                        The key is user-defined and human-readable name.
                        The value is the name of Variable.
        out_nodes(dict): A dict to indicate the input nodes of the graph.
                        The key is user-defined and human-readable name.
                        The value is the name of Variable.
    """

    def __init__(self, program=None, in_nodes=[], out_nodes=[]):
        """
        """
        super(GraphWrapper, self).__init__()
        self.program = Program() if program is None else program
        self.persistables = {}
        self.teacher_persistables = {}
        for var in self.program.list_vars():
            if var.persistable:
                self.persistables[var.name] = var
        self.compiled_graph = None
        in_nodes = [] if in_nodes is None else in_nodes
        out_nodes = [] if out_nodes is None else out_nodes
        self.in_nodes = OrderedDict(in_nodes)
        self.out_nodes = OrderedDict(out_nodes)
        self._attrs = OrderedDict()

    def all_parameters(self):
        """
        Get all the parameters in this graph.

        Returns:
            list<VarWrapper>: A list of VarWrapper instances.
        """
        params = []
        for block in self.program.blocks:
            for param in block.all_parameters():
                params.append(VarWrapper(param, self))
        return params

    def is_parameter(self, var):
        """
        Whether the given variable is parameter.

        Args:
            var(VarWrapper): The given varibale.
        """
        return isinstance(var._var, Parameter)

    def is_persistable(self, var):
        """
        Whether the given variable is persistable.

        Args:
            var(VarWrapper): The given varibale.
        """
        return var._var.persistable

    def ops(self):
        """
        Return all operator nodes included in the graph as a set.
        """
        ops = []
        for block in self.program.blocks:
            for op in block.ops:
                ops.append(OpWrapper(op, self))
        return ops

    def vars(self):
        """
        Get all the variables.
        """
        return [VarWrapper(var, self) for var in self.program.list_vars()]

    def var(self, name):
        """
        Get the variable by variable name.
        """
        for block in self.program.blocks:
            if block.has_var(name):
                return VarWrapper(block.var(name), self)
        return None

    def clone(self, for_test=False):
        """
        Clone a new graph from current graph.

        Returns:
            (GraphWrapper): The wrapper of a new graph.
        """
        return GraphWrapper(
            self.program.clone(for_test),
            copy.deepcopy(self.in_nodes), copy.deepcopy(self.out_nodes))

    def program(self):
        """
        Get the program in current wrapper.
        """
        return self.program

    def pre_ops(self, op):
        """
        Get all the previous operators of target operator.

        Args:
            op(OpWrapper): Target operator.

        Returns:
            list<OpWrapper>: A list of operators.
        """
        ops = []
        for p in self.ops():
            for in_var in op.all_inputs():
                if in_var in p.all_outputs():
                    ops.append(p)
        return ops

    def next_ops(self, op):
        """
        Get all the next operators of target operator.

        Args:
            op(OpWrapper): Target operator.

        Returns:
            list<OpWrapper>: A list of operators.
        """
        ops = []
        for p in self.ops():
            for out_var in op.all_outputs():
                if out_var in p.all_inputs():
                    ops.append(p)
        return ops

    def get_param_by_op(self, op):
        """
        Get the parameters used by target operator.
        """
        assert isinstance(op, OpWrapper)
        params = []
        for var in op.all_inputs():
            if isinstance(var._var, Parameter):
                params.append(var)
        assert len(params) > 0
        return params

    def numel_params(self):
        """
        Get the number of elements in all parameters.
        """
        ret = 0
        for param in self.all_parameters():
            ret += np.product(param.shape())
        return ret

    def infer_shape(self):
        """
        Update the groups of convolution layer according to current filters.
        It is used after loading pruned parameters from file.
        """
        for op in self.ops():
            if op.type() != 'conditional_block':
                op._op.desc.infer_shape(op._op.block.desc)