Esempio n. 1
0
    def compare_ifelse_op_and_numpy(self, place):
        self.set_test_case()

        prog = Program()
        startup_prog = Program()
        with program_guard(prog, startup_prog):
            src = layers.data(name='data', shape=[1], dtype='float32')
            cond = layers.fill_constant(
                [1], dtype='float32', value=self.cond_value)
            ifcond = layers.less_than(x=src, y=cond)
            ie = layers.IfElse(ifcond)
            with ie.true_block():
                true_target = ie.input(src)
                true_target = fluid.layers.exp(true_target)
                ie.output(true_target)

            with ie.false_block():
                false_target = ie.input(src)
                false_target = fluid.layers.tanh(false_target)
                ie.output(false_target)
            if_out = ie()
            out = layers.reduce_sum(if_out)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            fetch_list = [out]
            o1, = exe.run(fluid.default_main_program(),
                          feed={'data': self.data},
                          fetch_list=[out])
            o2 = self.numpy_cal()

            self.assertTrue(
                np.allclose(
                    o1, o2, atol=1e-8),
                "IfElse result : " + str(o1) + "\n Numpy result :" + str(o2))
    def test_ifelse(self):
        prog = Program()
        startup_prog = Program()
        with program_guard(prog, startup_prog):
            image = layers.data(name='x', shape=[784], dtype='float32')

            label = layers.data(name='y', shape=[1], dtype='int64')

            limit = layers.fill_constant_batch_size_like(input=label,
                                                         dtype='int64',
                                                         shape=[1],
                                                         value=5.0)
            cond = layers.less_than(x=label, y=limit)
            ie = layers.IfElse(cond)

            with ie.true_block():
                true_image = ie.input(image)
                hidden = layers.fc(input=true_image, size=100, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
                hidden = layers.fc(input=false_image, size=200, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                ie.output(prob)

            prob = ie()
            loss = layers.cross_entropy(input=prob[0], label=label)
            avg_loss = layers.mean(loss)

            optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(avg_loss, startup_prog)
        train_reader = paddle.batch(paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=8192),
                                    batch_size=200)

        place = core.CPUPlace()
        exe = Executor(place)

        exe.run(kwargs['startup_program'])
        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for data in train_reader():
                x_data = np.array(map(lambda x: x[0], data)).astype("float32")
                y_data = np.array(map(lambda x: x[1], data)).astype("int64")
                y_data = y_data.reshape((y_data.shape[0], 1))

                outs = exe.run(kwargs['main_program'],
                               feed={
                                   'x': x_data,
                                   'y': y_data
                               },
                               fetch_list=[avg_loss])
                print outs[0]
                if outs[0] < 1.0:
                    return
        self.assertFalse(True)
Esempio n. 3
0
    def test_input_type_error(self):
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program, startup_program):
            src = layers.data(name='data', shape=[1], dtype='float32')
            const_value = layers.fill_constant(
                [1], dtype='float32', value=123.0)
            ifcond = layers.less_than(x=src, y=const_value)
            with self.assertRaises(TypeError):
                ie = layers.IfElse(set())
            with self.assertRaises(TypeError):
                ie = layers.IfElse(ifcond, set())

            with self.assertRaises(TypeError):
                ie = layers.IfElse(ifcond)
                with ie.true_block():
                    true_target = ie.input(src)
                    true_target = fluid.layers.exp(true_target)
                    ie.output([])
Esempio n. 4
0
    def check_network_convergence(self,
                                  use_cuda=True,
                                  use_mem_opt=False,
                                  iter_num=5):
        prog = Program()
        startup_prog = Program()
        prog.random_seed = 100
        startup_prog.random_seed = 100
        with program_guard(prog, startup_prog):
            image = layers.data(name='x', shape=[784], dtype='float32')

            label = layers.data(name='y', shape=[1], dtype='int64')

            limit = layers.fill_constant(shape=[1], dtype='int64', value=5)
            cond = layers.less_than(x=label, y=limit)
            ie = layers.IfElse(cond)

            with ie.true_block():
                true_image = ie.input(image)
                hidden = layers.fc(input=true_image, size=100, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
                hidden = layers.fc(input=false_image, size=200, act='tanh')
                prob = layers.fc(input=hidden, size=10, act='softmax')
                ie.output(prob)

            prob = ie()
            loss = layers.cross_entropy(input=prob[0], label=label)
            avg_loss = layers.mean(loss)

            optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(avg_loss, startup_prog)
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=200)

            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = Executor(place)

            exec_strategy = fluid.ExecutionStrategy()
            exec_strategy.use_cuda = use_cuda

            build_strategy = fluid.BuildStrategy()
            build_strategy.memory_optimize = use_mem_opt

            train_cp = compiler.CompiledProgram(fluid.default_main_program())
            train_cp = train_cp.with_data_parallel(
                loss_name=avg_loss.name,
                exec_strategy=exec_strategy,
                build_strategy=build_strategy)
            fetch_list = [avg_loss.name]

            exe.run(startup_prog)
            PASS_NUM = 100
            loop = 0
            ret = []
            for pass_id in range(PASS_NUM):
                for data in train_reader():
                    x_data = np.array([x[0] for x in data]).astype("float32")
                    y_data = np.array([x[1] for x in data]).astype("int64")
                    y_data = y_data.reshape((y_data.shape[0], 1))

                    outs = exe.run(train_cp,
                                   feed={'x': x_data,
                                         'y': y_data},
                                   fetch_list=[avg_loss])

                    loop += 1
                    ret.append(outs[0])
                    if iter_num == loop:
                        return ret
            return ret